Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic

An electrostatic potential field (EPF) path planner is combined with a two-layered fuzzy logic inference engine and implemented for real-time mobile robot navigation in a 2-D dynamic environment. The environment is first mapped into a resistor network; an electrostatic potential field is then created through current injection into the network. The path of maximum current through the network corresponds to the approximately optimum path in the environment. The first layer of the fuzzy logic inference engine performs sensor fusion from sensor readings into a fuzzy variable, collision, providing information about possible collisions in four directions, front, back, left and right. The second layer guarantees collision avoidance with dynamic obstacles while following the trajectory generated by the electrostatic potential field. The proposed approach is experimentally tested using the Nomad 200 mobile robot.

[1]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[2]  Kimon P. Valavanis,et al.  A 3-D Potential panel method for robot motion planning , 1997, Robotica.

[3]  François G. Pin,et al.  Using fuzzy behaviors for the outdoor navigation of a car with low-resolution sensors , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[4]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[5]  J. Reif,et al.  Shortest Paths in Euclidean Space with Polyhedral Obstacles. , 1985 .

[6]  Peter W. Tse,et al.  Fuzzy mobile robot navigation and sensor integration , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[7]  Michael Reinfrank,et al.  An introduction to fuzzy control (2nd ed.) , 1996 .

[8]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[9]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[10]  Alan F. Murray,et al.  Real-Time Autonomous Robot Navigation Using VLSI Neural Networks , 1990, NIPS.

[11]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[12]  Kimon P. Valavanis,et al.  Navigation of an autonomous vehicle using a combined electrostatic potential field/fuzzy inference approach , 1998 .

[13]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[14]  Mark H. Overmars,et al.  Efficient algorithms for exact motion planning amidst fat obstacles , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[15]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[16]  Jianwei Zhang,et al.  Fuzzy logic rules for mapping sensor data to robot control , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[17]  John T. Wen,et al.  Motion planning and dynamic control of a linked manipulator using modified magnetic fields , 1997, Proceedings of International Conference on Robotics and Automation.

[18]  Kimon P. Valavanis,et al.  Mobile robot navigation in 2-D dynamic environments using an electrostatic potential field , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[19]  Yoshifumi Kitamura,et al.  3-D path planning in a dynamic environment using an octree and an artificial potential field , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[20]  L. Tarassenko,et al.  Analogue computation of collision-free paths , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[21]  Narendra Ahuja,et al.  A potential field approach to path planning , 1992, IEEE Trans. Robotics Autom..

[22]  Peter Y. K. Cheung,et al.  Combining goal-directed, reactive and reflexive navigation in autonomous mobile robots , 1996, 1996 Australian New Zealand Conference on Intelligent Information Systems. Proceedings. ANZIIS 96.

[23]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[24]  David M. Mount,et al.  An output sensitive algorithm for computing visibility graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[25]  Jianwei Zhang,et al.  A fuzzy control approach for executing subgoal guided motion of a mobile robot in a partially-known environment , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[26]  Shangxian Peng,et al.  Neural network and fuzzy logic techniques based collision avoidance for a mobile robot , 1997, Robotica.

[27]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[28]  Kimon P. Valavanis,et al.  Sensor-based 2-D Potential Panel Method for Robot Motion Planning , 1996, Robotica.

[29]  Micha Sharir,et al.  Motion Planning in the Presence of Moving Obstacles , 1985, FOCS.

[30]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[31]  Marcelo Simoes Introduction to Fuzzy Control , 2003 .

[32]  Alessandro Saffiotti,et al.  The uses of fuzzy logic in autonomous robot navigation , 1997, Soft Comput..

[33]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[34]  John Yen,et al.  A fuzzy logic based extension to Payton and Rosenblatt's command fusion method for mobile robot navigation , 1995, IEEE Trans. Syst. Man Cybern..

[35]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[36]  Hans Rohnert,et al.  Shortest Paths in the Plane with Convex Polygonal Obstacles , 1986, Inf. Process. Lett..

[37]  Wei Li,et al.  'Perception-action' behavior control of a mobile robot in uncertain environments using fuzzy logic , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[38]  Jin Luo,et al.  Computing motion using analog and binary resistive networks , 1988, Computer.