A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors

A high-precision compensated CMOS bandgap reference without resistors, which is fabricated in 0.5- μm CMOS technology, is presented in this brief. The circuit uses ratioed transistors together with the inverse-function technique to produce a first-order temperature-insensitive voltage reference. More importantly, a higher-order curvature correction method called VBE linearization is presented to directly compensate for the thermal nonlinearity of the base-emitter voltage. The power consumption of the proposed reference is 0.648 mW at 3.6 V. A temperature coefficient of 11.8 ppm/°C and power supply rejection ratio (PSRR) of more than 31 dB at low frequencies are easily achieved.

[1]  T. R. Viswanathan,et al.  The CMOS negative impedance converter , 1988 .

[2]  Gabriel A. Rincon-Mora,et al.  A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference , 1998, IEEE J. Solid State Circuits.

[3]  Ka Nang Leung,et al.  A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference , 2003, IEEE J. Solid State Circuits.

[4]  Willy Sansen,et al.  analog design essentials , 2011 .

[5]  W. Sansen Challenges in analog IC design submicron CMOS technologies , 1996, 1996 IEEE-CAS Region 8 Workshop on Analog and Mixed IC Design. Proceedings.

[6]  I. M. Filanovsky,et al.  BiCMOS cascaded bandgap voltage reference , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.

[7]  G.C.M. Meijer,et al.  A new curvature-corrected bandgap reference , 1981, IEEE Journal of Solid-State Circuits.

[8]  J. F. Duque-Carrillo,et al.  1-V rail-to-rail operational amplifiers in standard CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[9]  Gyudong Kim,et al.  Exponential curvature-compensated BiCMOS bandgap references , 1994, IEEE J. Solid State Circuits.

[10]  T. R. Viswanathan,et al.  A Low-Supply-Voltage CMOS Sub-Bandgap Reference , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  T. R. Viswanathan,et al.  A CMOS bandgap reference without resistors , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[12]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[13]  Remco J. Wiegerink,et al.  Generalized translinear circuit principle , 1991 .

[14]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.

[15]  C. Popa,et al.  Optimal curvature-compensated BiCMOS bandgap reference , 2001, ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat..

[16]  B. Gilbert Translinear circuits: a proposed classification , 1975 .

[17]  J. Hanson,et al.  CMOS voltage to current transducers , 1985 .

[18]  G. Iannaccone,et al.  A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[19]  Bang-Sup Song,et al.  A precision curvature-compensated CMOS bandgap reference , 1983, 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[20]  Gerard C.M. Meijer,et al.  A New Curvature-Corrected Bandgap Reference , 1981, ESSCIRC '81: 7th European Solid State Circuits Conference.