Block-Deterministic Regular Languages

We introduce the notions of blocked, block-marked and blockdeterministic regular expressions. We characterize block-deterministic regular expressions with deterministic Glushkov block automata. The results can be viewed as a generalization of the characterization of one-unambiguous regular expressions with deterministic Glushkov automata. In addition, when a language L has a block-deterministic expression E, we can construct a deterministic finite-state automaton for L that has size linear in the size of E.

[1]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..

[2]  V. Glushkov THE ABSTRACT THEORY OF AUTOMATA , 1961 .

[3]  Shimon Even,et al.  Ambiguity in Graphs and Expressions , 1971, IEEE Transactions on Computers.

[4]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[5]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[6]  Gérard Berry,et al.  From Regular Expressions to Deterministic Automata , 1986, Theor. Comput. Sci..

[7]  Derick Wood,et al.  One-Unambiguous Regular Languages , 1998, Inf. Comput..

[8]  Djelloul Ziadi,et al.  Determinization of Glushkov Automata , 1998, Workshop on Implementing Automata.

[9]  Derick Wood,et al.  One-Unambiguous Regular Languages , 1998, Inf. Comput..

[10]  Derick Wood,et al.  Gluskov and Thompson constructions : a synthesis , 1998 .

[11]  Dora Giammarresi,et al.  Deterministic Generalized Automata , 1995, Theor. Comput. Sci..

[12]  Pascal Caron,et al.  Characterization of Glushkov automata , 2000, Theor. Comput. Sci..

[13]  Jean-Marc Champarnaud,et al.  Subset construction complexity for homogeneous automata, position automata and ZPC-structures , 2001, Theor. Comput. Sci..