3-D stochastic modeling and simulation of fault zones in the Albalá granitic pluton, SW Iberian Variscan Massif

A distribution of fracture index (FI) is obtained from stochastic modeling and simulation to characterize quantitatively the fault system of the Mina Ratones area in three-dimensions (3-D). FI is a quantitative estimate of the fracture intensity in discrete domains of the granitic rock massif. The resulting 3-D grids, expressed as block (cells) models or contoured isosurfaces of FI, show high and low FI zones. The correlation of these zones with mapped faults allows two structural domains to be distinguished: (1) variably irregular surfaces of high FI, and (2) rhomboidal blocks of low FI located inside them. High FI domains (FI>4.2 m−1) are interpreted as fault zones, since there is a good correlation at the surface between the domains and traces of the major fault zones. Low FI blocks (FI<2.5 m−1) correspond to less fractured granite. The contact between high and low FI domains is gradual. The high and low FI structural domains may correspond with the damage zone/fault core and the protolith in the model for fault zone architecture of Caine et al. (1996). Therefore, 3-D grids of the FI in granitic areas affected by strike-slip brittle tectonics, such as Mina Ratones, constitute an image of fault zone architecture.

[1]  Leslie Smith,et al.  Fluid flow in fault zones: Influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime , 1996 .

[2]  P. L. Hancock,et al.  Brittle microtectonics: principles and practice , 1985 .

[3]  A. Journel Fundamentals of geostatistics in five lessons , 1991 .

[4]  James P. Evans,et al.  Chemical Changes and Fluid-Rock Interaction in Faults of Crystalline Thrust Sheets, Northwestern Wyoming, U.S.A. , 1995 .

[5]  A. Tryggvason,et al.  Mapping brittle fracture zones in three dimensions: high resolution traveltime seismic tomography in a granitic pluton , 2002 .

[6]  R. D. Terzaghi Sources of Error in Joint Surveys , 1965 .

[7]  James P. Evans,et al.  Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults , 2000 .

[8]  F. Chester,et al.  Composite planar fabric of gouge from the Punchbowl Fault, California , 1987 .

[9]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[10]  James P. Evans,et al.  Fluid‐rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures , 1995 .

[11]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[12]  R. D. Dallmeyer,et al.  Pre-Mesozoic Geology of Iberia , 1991 .

[13]  Edzer Pebesma,et al.  GSTAT: a program for geostatistical modelling, prediction and simulation , 1998 .

[14]  John A. Hudson,et al.  Characterization and Interpretation of Rock Mass Joint Patterns , 1985 .

[15]  A. Castro Structural pattern and ascent model in the Central Extremadura batholith, Hercynian belt, Spain , 1987 .

[16]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[17]  J. Jaime Gómez-Hernández,et al.  Theory and Practice of Sequential Simulation , 1994 .

[18]  J. Jaime Gómez-Hernández,et al.  ISIM3D: and ANSI-C three-dimensional multiple indicator conditional simulation program , 1990 .

[19]  A. Pérez-Estaún,et al.  Crustal thickening and deformation sequence in the footwall to the suture of the Variscan belt of northwest Spain , 1991 .

[20]  James P. Evans,et al.  Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid–rock interaction, and fault morphology , 1998 .

[21]  R. C. Egea,et al.  Contribución al conocimiento geológico y geoquímico de los granitos de Albalá y Montánchez (Extremadura Central) y su relación con las mineralizaciones de estaño y wolframio. , 1992 .

[22]  James P. Evans,et al.  Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and modeling studies , 1991 .

[23]  Frederick M. Chester,et al.  Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California , 1986 .

[24]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[25]  Maria José Jurado,et al.  Two-dimensional geostatistical modeling and prediction of the fracture system in the Albala Granitic Pluton, SW Iberian Massif, Spain , 2001 .

[26]  T. Little Faulting-related displacement gradients and strain adjacent to the Awatere strike-slip fault in New Zealand , 1996 .

[27]  W. Narr,et al.  Joint spacing in sedimentary rocks , 1991 .

[28]  D. Sanderson,et al.  Hercynian transpressional tectonics at the southern margin of the Central Iberian Zone, west Spain , 1991, Journal of the Geological Society.

[29]  James P. Evans,et al.  Internal structure and weakening mechanisms of the San Andreas Fault , 1993 .

[30]  Clayton V. Deutsch,et al.  Methodology for Integrating Analog Geologic Data in 3-D Variogram Modeling , 1999 .