Self-Adaptive Niching CMA-ES with Mahalanobis Metric

Existing niching techniques commonly use the Euclidean distance metric in the decision space for the classification of feasible solutions to the niches under formation. This approach is likely to encounter problems in high-dimensional landscapes with non-isotropic basins of attraction. Here we consider niching with the covariance matrix adaptation evolution strategy (CMA-ES), and introduce the Mahalanobis distance metric into the niching mechanism, aiming to allow a more accurate spatial classification, based on the ellipsoids of the distribution, rather than hyper-spheres of the Euclidean metric. This is tested with the CMA-(+) routines, and compared to two niching frameworks - fixed niche radius as well as self- adaptive niche radius, which is based on the coupling to the step-size. The performance of the different variants is evaluated on a suite of theoretical test-functions. We thus present here the Mahalanobis-assisted CMA-niching as a state-of-the-art niching technique within evolution strategies (ES), and propose it as a solution to the so-called niche radius problem.

[1]  N. Hansen,et al.  Step-Size Adaptation Based on Non-Local Use Selection Information , 1994 .

[2]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[3]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[4]  Nikolaus Hansen,et al.  A Derandomized Approach to Self-Adaptation of Evolution Strategies , 1994, Evolutionary Computation.

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[7]  Nikolaus Hansen,et al.  Step-Size Adaption Based on Non-Local Use of Selection Information , 1994, PPSN.

[8]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[9]  Gideon Avigad,et al.  Concept-Based Interactive Brainstorming in Engineering Design , 2004, J. Adv. Comput. Intell. Intell. Informatics.

[10]  Ofer M. Shir,et al.  Niching in Evolution Strategies and Its Application to Laser Pulse Shaping , 2005, Artificial Evolution.

[11]  N. Hansen,et al.  The Multi-objective Variable Metric Evolution Strategy Part I , 2005 .

[12]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[13]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[14]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[15]  Hans-Georg Beyer,et al.  Qualms Regarding the Optimality of Cumulative Path Length Control in CSA/CMA-Evolution Strategies , 2003, Evolutionary Computation.

[16]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[17]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[18]  Ofer M. Shir,et al.  Niche Radius Adaptation in the CMA-ES Niching Algorithm , 2006, PPSN.

[19]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[20]  Christian Igel,et al.  A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies , 2006, GECCO.

[21]  Ofer M. Shir,et al.  Dynamic niching in evolution strategies with covariance matrix adaptation , 2005, 2005 IEEE Congress on Evolutionary Computation.

[22]  Ofer M. Shir,et al.  Performance analysis of niching algorithms based on derandomized-ES variants , 2007, GECCO '07.