Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes

Abstract. The intracellular refractive index is an important parameter that describes the optical density of the cytoplasm and the concentration of the intracellular solutes. The refractive index of adherently grown cells is difficult to access. We present a method in which silica microspheres in living cells are used to determine the cytoplasm refractive index with quantitative phase microscopy. The reliability of our approach for refractive index retrieval is shown by data from a comparative study on osmotically stimulated adherent and suspended human pancreatic tumor cells. Results from adherent human fibro sarcoma cells demonstrate the capability of the method for sensing of dynamic refractive index changes and its usage with microfluidics.

[1]  Laura Waller,et al.  Phase from chromatic aberrations. , 2010, Optics express.

[2]  E. Cuche,et al.  Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. , 2005, Optics express.

[3]  K. Badizadegan,et al.  Live cell refractometry using microfluidic devices. , 2006, Optics letters.

[4]  P. H. Yap,et al.  Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity , 2006 .

[5]  Patrik Langehanenberg,et al.  Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. , 2007, Journal of biomedical optics.

[6]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[7]  Huafeng Ding,et al.  Instantaneous Spatial Light Interference Microscopy. , 2010, Optics express.

[8]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[9]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[10]  E. Cuche,et al.  Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. , 1999, Applied optics.

[11]  G. Barbastathis,et al.  Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. , 2010, Optics letters.

[12]  Daniel Carl,et al.  Investigation of living pancreas tumor cells by digital holographic microscopy. , 2006, Journal of biomedical optics.

[13]  Suraiya Rasheed,et al.  Characterization of a newly derived human sarcoma cell line (HT‐1080) , 1974, Cancer.

[14]  Kishan Dholakia,et al.  Intracellular Dielectric Tagging for Improved Optical Manipulation of Mammalian Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[16]  Jaeduck Jang,et al.  Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. , 2012, Optics express.

[17]  Johannes Frank,et al.  Refractive index determination of transparent samples by noniterative phase retrieval. , 2011, Applied optics.

[18]  I Yamaguchi,et al.  Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope. , 1999, Applied optics.

[19]  Francisco E. Robles,et al.  Nonlinear phase dispersion spectroscopy. , 2011, Optics letters.

[20]  K. Nugent,et al.  Refractive index measurement in viable cells using quantitative phase‐amplitude microscopy and confocal microscopy , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[21]  Daniel Carl,et al.  Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. , 2004, Applied optics.

[22]  David J Stevenson,et al.  Multimodal biophotonic workstation for live cell analysis , 2012, Journal of biophotonics.

[23]  Christian Depeursinge,et al.  Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. , 2008, Optics letters.

[24]  Natan T. Shaked,et al.  Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy , 2010, Biomedical optics express.

[25]  O. Haeberlé,et al.  High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. , 2009, Optics letters.

[26]  Björn Kemper,et al.  Simplified approach for quantitative digital holographic phase contrast imaging of living cells. , 2011, Journal of biomedical optics.

[27]  Christian Depeursinge,et al.  Determination of Transmembrane Water Fluxes in Neurons Elicited by Glutamate Ionotropic Receptors and by the Cotransporters KCC2 and NKCC1: A Digital Holographic Microscopy Study , 2011, The Journal of Neuroscience.

[28]  H. Elsässer,et al.  Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma , 1992, Virchows Archiv. B, Cell pathology including molecular pathology.

[29]  V. P. Tychinskii,et al.  Coherent phase microscopy of intracellular processes , 2001 .

[30]  E. Hoffmann,et al.  Physiology of cell volume regulation in vertebrates. , 2009, Physiological reviews.

[31]  Daniel Carl,et al.  Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells , 2006, SPIE Photonics Europe.

[32]  Patrik Langehanenberg,et al.  Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells , 2010, Thrombosis and Haemostasis.

[33]  V. Torri,et al.  Cell kinetics of human ovarian cancer with in vivo administration of bromodeoxyuridine. , 1994, Annals of oncology : official journal of the European Society for Medical Oncology.

[34]  Chun-Min Lo,et al.  High-resolution quantitative phase-contrast microscopy by digital holography. , 2005, Optics express.

[35]  Christian Depeursinge,et al.  Early Cell Death Detection with Digital Holographic Microscopy , 2012, PloS one.

[36]  K. Nugent,et al.  Quantitative optical phase microscopy. , 1998, Optics letters.

[37]  YongKeun Park,et al.  Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells , 2009, BiOS.

[38]  D. Dirksen,et al.  Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. , 2008, Applied optics.

[39]  B. Wattellier,et al.  Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. , 2009, Optics express.

[40]  E. Cuche,et al.  Cell refractive index tomography by digital holographic microscopy. , 2006, Optics letters.

[41]  V. Lauer New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope , 2002, Journal of microscopy.

[42]  Kishan Dholakia,et al.  Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation , 2010, Biomedical optics express.

[43]  J. D. de Boer,et al.  Spectral-domain optical coherence phase and multiphoton microscopy. , 2007, Optics letters.

[44]  P. Marquet,et al.  Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. , 2006, Optics express.

[45]  Jochen Guck,et al.  Quantifying cellular differentiation by physical phenotype using digital holographic microscopy. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[46]  Patrik Langehanenberg,et al.  Determination of the integral refractive index of cells in suspension by digital holographic phase contrast microscopy , 2008, SPIE Photonics Europe.

[47]  Patrik Langehanenberg,et al.  Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. , 2009, American journal of physiology. Renal physiology.

[48]  Yizheng Zhu,et al.  Quantitative phase spectroscopy , 2012, Biomedical optics express.

[49]  R. Barer Refractometry and interferometry of living cells. , 1957, Journal of the Optical Society of America.

[50]  A S Verkman,et al.  Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. , 1996, Biophysical journal.

[51]  Markus Fratz,et al.  Noninvasive time-dependent cytometry monitoring by digital holography. , 2007, Journal of biomedical optics.

[52]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[53]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.