Interpolation and approximation in L2(gamma)

Assume a standard Brownian motion W=(W"t)"t"@?"["0","1"], a Borel function f:R->R such that f(W"1)@?L"2, and the standard Gaussian measure @c on the real line. We characterize that f belongs to the Besov space B"2","q^@q(@c)@?(L"2(@c),D"1","2(@c))"@q","q, obtained via the real interpolation method, by the behavior of a"X(f(X"1);@t)@[email protected]?f(W"1)-P"X^@tf(W"1)@?"L"""2, where @t=(t"i)"i"="0^n is a deterministic time net and P"X^@t:L"2->L"2 the orthogonal projection onto a subspace of 'discrete' stochastic integrals x"[email protected]?"i"="1^nv"i"-"1(X"t"""i-X"t"""i"""-"""1) with X being the Brownian motion or the geometric Brownian motion. By using Hermite polynomial expansions the problem is reduced to a deterministic one. The approximation numbers a"X(f(X"1);@t) can be used to describe the L"2-error in discrete time simulations of the martingale generated by f(W"1) and (in stochastic finance) to describe the minimal quadratic hedging error of certain discretely adjusted portfolios.

[1]  S. Geiss Weighted BMO and discrete time hedging within the Black-Scholes model , 2005 .

[2]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[3]  F. Hirsch Lipschitz Functions and Fractional Sobolev Spaces , 1999 .

[4]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[5]  On an approximation problem for stochastic integrals where random time nets do not help , 2006 .

[6]  E. Breuillard Distributions diophantiennes et théorème limite local sur , 2005 .

[7]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[8]  Denis Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..

[9]  C. Bennett,et al.  Interpolation of operators , 1987 .

[10]  Ruotao Zhang Couverture approchée des options européennes , 1999 .

[11]  Shinzo Watanabe Fractional order Sobolev spaces on Wiener space , 1993 .

[12]  Emmanuel Gobet,et al.  Discrete time hedging errors for options with irregular payoffs , 2001, Finance Stochastics.

[13]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[14]  Nigel J. Newton Variance Reduction for Simulated Diffusions , 1994, SIAM J. Appl. Math..

[15]  Christel Geiss,et al.  On approximation of a class of stochastic integrals and interpolation , 2004 .

[16]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[17]  H. Triebel Theory Of Function Spaces , 1983 .

[18]  S. Geiss Quantitative approximation of certain stochastic integrals , 2002 .