Risk management approaches in data mining

[1]  Wenjie Hu,et al.  Robust support vector machine with bullet hole image classification , 2002 .

[2]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[3]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[4]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[5]  G. Pflug,et al.  Value-at-Risk in Portfolio Optimization: Properties and Computational Approach ⁄ , 2005 .

[6]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[7]  Stan Uryasev,et al.  Value-at-risk support vector machine: stability to outliers , 2013, Journal of Combinatorial Optimization.

[8]  Yuanyuan Wang,et al.  A rough margin based support vector machine , 2008, Inf. Sci..

[9]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[10]  Olivier Chapelle,et al.  Training a Support Vector Machine in the Primal , 2007, Neural Computation.

[11]  Helmut Mausser,et al.  ALGORITHMS FOR OPTIMIZATION OF VALUE­ AT-RISK* , 2002 .

[12]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[13]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[14]  Xiaoguang Yang,et al.  Complexity of Scenario-Based Portfolio Optimization Problem with VaR Objective , 2002, Int. J. Found. Comput. Sci..

[15]  Chih-Jen Lin,et al.  Training v-Support Vector Regression: Theory and Algorithms , 2002, Neural Computation.

[16]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[17]  Philippe Jorion Value at risk: the new benchmark for controlling market risk , 1996 .

[18]  C. Acerbi Spectral measures of risk: A coherent representation of subjective risk aversion , 2002 .

[19]  Theodore B. Trafalis,et al.  Robust classification and regression using support vector machines , 2006, Eur. J. Oper. Res..

[20]  Akiko Takeda,et al.  Interaction between financial risk measures and machine learning methods , 2014, Comput. Manag. Sci..

[21]  R. Rockafellar,et al.  The fundamental risk quadrangle in risk management, optimization and statistical estimation , 2013 .

[22]  Stan Uryasev,et al.  Statistical Decision Problems: Selected Concepts and Portfolio Safeguard Case Studies , 2013 .

[23]  Jason Weston,et al.  Trading convexity for scalability , 2006, ICML.

[24]  Stan Uryasev,et al.  Advanced risk measures in estimation and classification , 2012 .

[25]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[26]  Bernhard Schölkopf,et al.  Extension of the nu-SVM range for classification , 2003 .

[27]  Akiko Takeda,et al.  ν-support vector machine as conditional value-at-risk minimization , 2008, ICML '08.

[28]  R. Horst,et al.  DC Programming: Overview , 1999 .

[29]  Sheng-De Wang,et al.  Fuzzy support vector machines , 2002, IEEE Trans. Neural Networks.

[30]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[31]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[32]  Xuegong Zhang,et al.  Using class-center vectors to build support vector machines , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[33]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[34]  Akiko Takeda,et al.  A linear classification model based on conditional geometric score , 2004 .

[35]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.