An agent-based approach for modeling molecular self-organization.

Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.

[1]  Giovanni Ciccotti,et al.  Molecular dynamics of rigid systems in cartesian coordinates: A general formulation , 1982 .

[2]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[3]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[4]  McNamara,et al.  From automata to fluid flow: Comparisons of simulation and theory. , 1989, Physical review. A, General physics.

[5]  Electrostatic analogy for surfactant assemblies , 1992 .

[6]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[7]  J. Pablo,et al.  Bond‐bias simulation of phase equilibria for strongly associating fluids , 1994 .

[8]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[9]  John R. Koza,et al.  Hidden Order: How Adaptation Builds Complexity. , 1995, Artificial Life.

[10]  M. Wertheim,et al.  MONTE CARLO SIMULATION OF N-MEMBER ASSOCIATING FLUIDS : APPLICATION TO ANTIGEN-ANTIBODY SYSTEMS , 1996 .

[11]  P. Krugman The Self Organizing Economy , 1996 .

[12]  J. Villain,et al.  Physics of crystal growth , 1998 .

[13]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[14]  Bernard Testa,et al.  A Cellular Automata Model of the Percolation Process , 1999, J. Chem. Inf. Comput. Sci..

[15]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[16]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[17]  J. Reif,et al.  Logical computation using algorithmic self-assembly of DNA triple-crossover molecules , 2000, Nature.

[18]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[19]  D. Kofke,et al.  A general-purpose biasing scheme for Monte Carlo simulation of associating fluids , 2001 .

[20]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[21]  Peter Danielson Competition among cooperators: Altruism and reciprocity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Joshua M. Epstein,et al.  Modeling civil violence: An agent-based computational approach , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Linyong Mao,et al.  Simple Lattice Simulation of Chiral Discrimination in Monolayers , 2002, J. Chem. Inf. Comput. Sci..

[24]  Eric Bonabeau,et al.  Agent-based modeling: Methods and techniques for simulating human systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Bernard Testa,et al.  Studies of Ligand Diffusion Pathways over a Protein Surface , 2003, J. Chem. Inf. Comput. Sci..

[26]  N. Seeman DNA in a material world , 2003, Nature.

[27]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[28]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[29]  Masuhiro Mikami,et al.  Rigid‐body dynamics in the isothermal‐isobaric ensemble: A test on the accuracy and computational efficiency , 2003, J. Comput. Chem..

[30]  Eric Klavins,et al.  Graph grammars for self assembling robotic systems , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[31]  Mitsunori Ikeguchi,et al.  Partial rigid‐body dynamics in NPT, NPAT and NPγT ensembles for proteins and membranes , 2004, J. Comput. Chem..