Efficient computation of Sommerfeld integral tails – methods and algorithms

A review is presented of the most effective methods for the computation of Sommerfeld integral tails. Such integrals, which are often oscillatory, singular and divergent, commonly arise in layered media Green functions. The mathematical foundations of various pertinent methods are discussed in detail and their performance is illustrated by relevant numerical examples. The associated algorithms are given in pseudocode for their easy computer implementation.

[1]  J. R. Mosig,et al.  Real axis integration of Sommerfeld integrals with error estimation , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[2]  W. Squire A quadrature method for finite intervals , 1976 .

[3]  K. Michalski,et al.  Multilayered media Green's functions in integral equation formulations , 1997 .

[4]  J. Waldvogel,et al.  Numerical Analysis: A Comprehensive Introduction , 1989 .

[5]  Avram Sidi,et al.  A user-friendly extrapolation method for oscillatory infinite integrals , 1988 .

[6]  Avram Sidi,et al.  The numerical evaluation of very oscillatory infinite integrals by extrapolation , 1982 .

[7]  Herbert H. H. Homeier Scalar Levin-type sequence transformations , 2000 .

[8]  Juan R. Mosig,et al.  Acceleration of slowly convergent series via the generalized weighted-averages method , 2010 .

[9]  David A. Smith,et al.  HURRY: An Acceleration Algorithm for Scalar Sequences and Series , 1983, TOMS.

[10]  Qing Huo Liu,et al.  Singularity subtraction for evaluation of Green's functions for multilayer media , 2006, IEEE Transactions on Microwave Theory and Techniques.

[11]  A novel approach for the efficient and accurate computation of sommerfeld integral tails , 2015, 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[12]  Jaroslav Kautsky,et al.  Algorithm 655: IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures , 1987, TOMS.

[13]  David A. Smith,et al.  Numerical Comparisons of Nonlinear Convergence Accelerators , 1982 .

[14]  A. Cangellaris,et al.  Accurate approximation of Green's functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves , 2006, IEEE Transactions on Antennas and Propagation.

[15]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[16]  J. N. Lyness Integrating some infinite oscillating tails , 1985 .

[17]  Jonathan M. Borwein,et al.  Hand-to-hand combat with thousand-digit integrals , 2012, J. Comput. Sci..

[18]  F. Arndt,et al.  Efficient MPIE approach for the analysis of three-dimensional microstrip structures in layered media , 1997 .

[19]  P. Pathak,et al.  Radial propagation and steepest descent path integral representations of the planar microstrip dyadic Green's function , 1990 .

[20]  David C. Chang,et al.  Evaluation of Sommerfeld Intergrals Associated with Dipole Sources Above Earth , 1979 .

[21]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .

[22]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[23]  R. Moini,et al.  Efficient Evaluation of Green's Functions for Lossy Half-Space Problems , 2010 .

[24]  Philip Rabinowitz,et al.  Extrapolation methods in numerical integration , 1992, Numerical Algorithms.

[25]  Masatake Mori,et al.  Quadrature formulas obtained by variable transformation and the DE-rule , 1985 .

[26]  W. Squire An efficient iterative method for numerical evaluation of integrals over a semi‐infinite range , 1976 .

[27]  M. Goldman Forward Modelling for Frequency Domain Marine Electromagnetic SYSTEMS , 1987 .

[28]  Steven L. Dvorak Application of the fast Fourier transform to the computation of the Sommerfeld integral for a vertical electric dipole above a half-space , 1992 .

[29]  Leung Tsang,et al.  Numerical evaluation of electromagnetic fields due to dipole antennas in the presence of stratified media , 1974 .

[30]  Takuya Ooura,et al.  A robust double exponential formula for Fourier-type integrals , 1999 .

[31]  George Tyras,et al.  Radiation and propagation of electromagnetic waves , 1969 .

[32]  J. Mosig,et al.  Three-dimensional planar radiating structures in stratified media , 1997 .

[33]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[34]  Avram Sidi,et al.  A user-friendly extrapolation method for computing infinite range integrals of products of oscillatory functions , 2012 .

[35]  A. Poularikas The transforms and applications handbook , 2000 .

[36]  J. Drummond Convergence speeding, convergence and summability , 1984 .

[37]  T. Itoh Numerical techniques for microwave and millimeter-wave passive structures , 1989 .

[38]  K. Michalski Electromagnetic Field Computation in Planar Multilayers , 2005 .

[39]  R. Scraton A note on the summation of divergent power series , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  Juan R. Mosig,et al.  A Dynamical Radiation Model for Microstrip Structures , 1982 .

[41]  Hidenori Ogata,et al.  A Numerical Integration Formula Based on the Bessel Functions , 2005 .

[42]  Herbert H. H. Homeier A hierarchically consistent, iterative sequence transformation , 1994, Numerical Algorithms.

[43]  Hassan Safouhi,et al.  A comparative study of numerical steepest descent, extrapolation, and sequence transformation methods in computing semi-infinite integrals , 2012, Numerical Algorithms.

[44]  D. Bubenik A practical method for the numerical evaluation of Sommerfeld integrals , 1977 .

[45]  Richard S. Varga,et al.  Extrapolation methods: theory and practice , 1993, Numerical Algorithms.

[46]  Real axis integration of Sommerfeld integrals: Source and observation points in air , 1983 .

[47]  Frank Stenger,et al.  Integration Formulae Based on the Trapezoidal Formula , 1973 .

[48]  Arjen Markus,et al.  Modern Fortran in Practice , 2012 .

[49]  Improved Evaluation of Sommerfeld Integrals for Microstrip Antenna Problems , 2013, 2013 International Symposium on Electromagnetic Theory.

[50]  Leung Tsang,et al.  Fast Computation of Layered Medium Green's Functions of Multilayers and Lossy Media Using Fast All-Modes Method and Numerical Modified Steepest Descent Path Method , 2008, IEEE Transactions on Microwave Theory and Techniques.

[51]  I. M. Longman,et al.  Note on a method for computing infinite integrals of oscillatory functions , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[52]  S. K. Lucas,et al.  Evaluating infinite integrals involving products of Bessel functions of arbitrary order , 1995 .

[53]  Seymour Haber,et al.  The Tanh Rule for Numerical Integration , 1977 .

[54]  M. I. Aksun,et al.  Closed-Form Green's Functions in Planar Layered Media for All Ranges and Materials , 2010, IEEE Transactions on Microwave Theory and Techniques.

[55]  J. Mosig,et al.  Fast Computation of Sommerfeld Integral Tails via Direct Integration Based on Double Exponential-Type Quadrature Formulas , 2011, IEEE Transactions on Antennas and Propagation.

[56]  Terje O. Espelid,et al.  DQAINF: an algorithm for automatic integration of infinite oscillating tails , 1994, Numerical Algorithms.

[57]  Takuya Ooura,et al.  The double exponential formula for oscillatory functions over the half infinite interval , 1991 .

[58]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[59]  Juan R. Mosig,et al.  The Weighted Averages Method for Semi-Infinite Range Integrals Involving Products of Bessel Functions , 2013, IEEE Transactions on Antennas and Propagation.

[60]  Lingyun Ye NUMERICAL QUADRATURE: THEORY AND COMPUTATION , 2006 .

[61]  N. Alexopoulos,et al.  Sommerfeld Integrals in Modeling Interconnects and Microstrip Elements in Multi-Layered Media , 1998 .

[62]  Xiaoye S. Li,et al.  A Comparison of Three High-Precision Quadrature Schemes , 2003, Exp. Math..

[63]  Masatake Mori,et al.  Quadrature formulas obtained by variable transformation , 1973 .

[64]  Michael Mattes,et al.  On the Development and Evaluation of Spatial-Domain Green’s Functions for Multilayered Structures With Conductive Sheets , 2015, IEEE Transactions on Microwave Theory and Techniques.

[65]  Jung H. Kim,et al.  Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions , 2014, TOMS.

[66]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[67]  Juan R. Mosig Weighted Averages and Double Exponential Algorithms , 2013, IEICE Trans. Commun..

[68]  Prem K. Kythe,et al.  Handbook of Computational Methods for Integration , 2004 .

[69]  Analytical Expressions for Spatial-Domain Green’s Functions in Layered Media , 2015, IEEE Transactions on Antennas and Propagation.

[70]  Ayse Alaylioglu,et al.  The evaluation of oscillatory integrals with infinite limits , 1973 .

[71]  Nico M. Temme,et al.  An algorithm with ALGOL 60 program for the computation of the zeros of ordinary bessel functions and those of their derivatives , 1979 .

[72]  J. E. Kelley Modern Computing Methods , 1959 .

[73]  David H. Bailey,et al.  Effective Error Bounds in Euler-Maclaurin-Based QuadratureSchemes , 2005 .

[74]  Krzysztof A. Michalski,et al.  On the efficient evaluation of integral arising in the sommerfeld halfspace problem , 1985 .

[75]  Mengtao Yuan,et al.  Computation of the Sommerfeld Integral tails using the matrix pencil method , 2006, IEEE Transactions on Antennas and Propagation.

[76]  K. Michalski,et al.  Analysis of a Plane Wave-Excited Subwavelength Circular Aperture in a Planar Conducting Screen Illuminating a Multilayer Uniaxial Sample , 2015, IEEE Transactions on Antennas and Propagation.

[77]  O. Martin,et al.  Accurate and efficient computation of the Green's tensor for stratified media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  Jonathan M. Borwein,et al.  Experimentation in Mathematics: Computational Paths to Discovery , 2004 .

[79]  K. Michalski,et al.  On the Plane Wave-Excited Subwavelength Circular Aperture in a Thin Perfectly Conducting Flat Screen , 2014, IEEE Transactions on Antennas and Propagation.

[80]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[81]  P. Wynn,et al.  Sequence Transformations and their Applications. , 1982 .

[82]  Evert Slob,et al.  Direct determination of electric permittivity and conductivity from air-launched GPR surface reflection data for surface soil water content determination , 2008 .

[83]  Numerical integration of Sommerfeld integrals based on singularity extraction techniques and double exponential-type quadrature formulas , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[84]  Y. Leviatan,et al.  A Numerical Methodology for Efficient Evaluation of 2D Sommerfeld Integrals in the Dielectric Half-Space Problem , 2010, IEEE Transactions on Antennas and Propagation.

[85]  Alejandro Álvarez Melcón,et al.  Green's functions in lossy layered media: integration along the imaginary axis and asymptotic behavior , 2003 .

[86]  J. Mosig Integral equation Technique , 1989 .

[87]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[88]  Numerische Mathematik An Algorithm for a Special Case of a Generalization of the Richardson Extrapolation Process , 2005 .

[89]  E. T. Goodwin The evaluation of integrals of the form , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[90]  Ronald Cools,et al.  Integrating products of Bessel functions with an additional exponential or rational factor , 2008, Comput. Phys. Commun..

[91]  G. Evans Practical Numerical Integration , 1993 .

[92]  Evaluation of Sommerfeld integrals arising in the ground stake antenna problem , 1987 .

[93]  Avram Sidi,et al.  An automatic integration procedure for infinite range integrals involving oscillatory kernels , 1996, Numerical Algorithms.

[94]  Krzysztof A. Michalski,et al.  Extrapolation methods for Sommerfeld integral tails , 1998 .

[95]  Juan Mosig,et al.  The Weighted Averages Algorithm Revisited , 2012, IEEE Transactions on Antennas and Propagation.

[96]  J. R. Mosig,et al.  Efficient Algorithms for Computing Sommerfeld Integral Tails , 2012, IEEE Transactions on Antennas and Propagation.

[97]  David Levin,et al.  Practical extrapolation methods: theory and applications , 2005, Math. Comput..

[98]  M. Mori Discovery of the Double Exponential Transformation and Its Developments , 2005 .

[99]  A. Mohsen On the evaluation of Sommerfeld integrals , 1982 .

[101]  Alan D. Chave,et al.  Numerical integration of related Hankel transforms by quadrature and continued fraction expansion , 1983 .

[102]  Raj Mittra,et al.  Analytical techniques in the theory of guided waves , 1971 .

[103]  G. Evans,et al.  The tanh transformation for singular integrals , 1984 .

[104]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[105]  Hebert E. Salzer,et al.  A Simple Method for Summing Certain Slowly Convergent Series , 1954 .

[106]  F. Teixeira,et al.  Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  Toru Mogi,et al.  Electromagnetic Response of a Large Circular Loop Source on a Layered Earth: A New Computation Method , 2005 .

[108]  Evert Slob,et al.  Fast evaluation of zero‐offset Green's function for layered media with application to ground‐penetrating radar , 2007 .

[109]  T. Sarkar,et al.  Comparison of Quasi-Static and Exact Electromagnetic Fields from a Horizontal Electric Dipole Above a Lossy Dielectric Backed by an Imperfect Ground Plane , 1986 .

[110]  K. K. Mei,et al.  Numerical approximations of the Sommerfeld integral for fast convergence , 1978 .

[111]  P. Katehi,et al.  Real axis integration of Sommerfeld integrals with applications to printed circuit antennas , 1983 .

[112]  Fred T. Krogh,et al.  Algorithm 699: a new representation of Patterson's quadrature formulae , 1991, TOMS.

[113]  William Squire,et al.  Partition-extrapolation methods for numerical quadratures , 1975 .

[114]  Christoph W. Ueberhuber,et al.  Computational Integration , 2018, An Introduction to Scientific, Symbolic, and Graphical Computation.

[115]  Robert Piessens,et al.  Quadpack: A Subroutine Package for Automatic Integration , 2011 .

[116]  Michael N. Vrahatis,et al.  RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions , 1995 .

[117]  T. Sauter Computation of irregularly oscillating integrals , 2000 .

[118]  Ranjan Bhattacharya,et al.  Iterations of convergence accelerating nonlinear transforms , 1989 .

[119]  Gradimir V. Milovanović,et al.  Numerical integration of analytic functions , 2012 .

[120]  Spectral Domain Analysis of a Circular Nano-Aperture Illuminating a Planar Layered Sample , 2011 .

[121]  Howard A. Stone,et al.  Evaluating innite integrals involving Bessel functions of arbitrary order , 1995 .

[122]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[123]  J. Mosig,et al.  Analytical and numerical techniques in the Green's function treatment of microstrip antennas and scatterers , 1983 .