Technology in Marine Geosciences

This chapter describes the most commonly used technologies and instruments for observing and sampling in the field of marine geosciences and refers to a number of special papers within this encyclopedia and beyond. This chapter is meant as an introduction showing the variability and broad scale of intruments being used. Since technology is a vast and rapidly changing field, numerous specific instruments used throughout marine geoscience are undouptfully missing in this compilation.

[1]  Walter H. F. Smith,et al.  New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure , 2014, Science.

[2]  H. Thomas,et al.  Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages , 2014 .

[3]  C. Lister On the Thermal Balance of a Mid‐Ocean Ridge , 1972 .

[4]  C. Laj,et al.  Magnetic Anomalies Over Oceanic Ridges , 1963, Nature.

[5]  F N Spiess,et al.  East Pacific Rise: Hot Springs and Geophysical Experiments , 1980, Science.

[6]  Mark D. Hannington,et al.  Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge , 2014 .

[7]  W. Ryan,et al.  Global Multi‐Resolution Topography synthesis , 2009 .

[8]  H. Johnson,et al.  Near‐axis heat flow measurements on the northern Juan De Fuca Ridge: Implications for fluid circulation in oceanic crust , 1993 .

[9]  Nigel Edwards,et al.  Marine Controlled Source Electromagnetics: Principles, Methodologies, Future Commercial Applications , 2005 .

[10]  J. Gee,et al.  Source of oceanic magnetic anomalies and the geomagnetic polarity time scale , 2007 .

[11]  Peter T. Harris,et al.  Geomorphology of the oceans , 2014 .

[12]  M. Tivey,et al.  Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields , 2002 .

[13]  Deborah S. Kelley,et al.  Establishing a new era of submarine volcanic observatories: Cabling Axial Seamount and the Endeavour Segment of the Juan de Fuca Ridge , 2014 .

[14]  S. Constable Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding , 2013 .

[15]  B. Bett,et al.  Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience , 2014 .

[16]  Walter H. F. Smith,et al.  Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry , 1994 .

[17]  Deborah S. Kelley,et al.  Repeat bathymetric surveys at 1-metre resolution of lava flows erupted at Axial Seamount in April 2011 , 2012 .

[18]  Philippe Blondel,et al.  The Handbook of Sidescan Sonar , 2009 .

[19]  M. Tivey,et al.  The Magnetic Signature of Hydrothermal Systems in Slow Spreading Environments , 2013 .

[20]  N. Sleep,et al.  Egress of hot water from midocean ridge hydrothermal systems: Some thermal constraints , 1978 .

[21]  P. Kowalczyk Geophysical prelude to first exploitation of submarine massive sulphides , 2008 .

[22]  Walter H. F. Smith,et al.  Marine gravity anomaly from Geosat and ERS 1 satellite altimetry , 1997 .

[23]  M. Catalán,et al.  A new global marine magnetic anomaly data set , 2009 .

[24]  Kerry Key,et al.  Marine Electromagnetic Studies of Seafloor Resources and Tectonics , 2011, Surveys in Geophysics.

[25]  R. Searle,et al.  Three‐dimensional structure of oceanic core complexes: Effects on gravity signature and ridge flank morphology, Mid‐Atlantic Ridge, 30°N , 2008 .

[26]  M. Jegen,et al.  On mapping seafloor mineral deposits with central loop transient electromagnetics , 2012 .

[27]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[28]  M. Tivey,et al.  Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior , 2008 .

[29]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[30]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[31]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[32]  R. Harris,et al.  Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust , 2008 .

[33]  X. Pichon,et al.  Marine Magnetic Anomalies, Geomagnetic Field Reversals, and Motions of the Ocean Floor and , 1968 .

[34]  Laura Beranzoli,et al.  SEAFLOOR OBSERVATORIES: A New Vision of the Earth from the Abyss , 2015 .

[35]  Torstein Olsmo Sæbø,et al.  Challenges in Seafloor Imaging and Mapping With Synthetic Aperture Sonar , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[36]  J. Sempere,et al.  Evidence from gravity data for focused magmatic accretion along the Mid-Atlantic Ridge , 1990, Nature.

[37]  G. Wüst The major deep-sea expeditions and research vessels 1873–1960: A contribution to the history of oceanography☆ , 1964 .

[38]  M. Tivey,et al.  Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge , 2010 .

[39]  Ocean bottom seismics , 2011 .

[40]  D. Yoerger,et al.  Episodic dike swarms inferred from near‐bottom magnetic anomaly maps at the southern East Pacific Rise , 2003 .

[41]  E. Davis,et al.  Heat flow measured over the Juan de Fuca Ridge: Evidence for widespread hydrothermal circulation in a highly heat transportive crust , 1977 .

[42]  J. Bialas,et al.  The Use of Rotational Invariants for the Interpretation of Marine CSEM Data with a Case Study from the North Alex Mud Volcano, West Nile Delta , 2015 .

[43]  C. Anderson,et al.  An integrated approach to marine electromagnetic surveying using a towed streamer and source , 2010 .

[44]  K. Okino,et al.  Geomorphological variations at hydrothermal sites in the southern Mariana Trough: Relationship between hydrothermal activity and topographic characteristics , 2012 .

[45]  C. Devey,et al.  Responsible Science at Hydrothermal Vents , 2007 .

[46]  M. Haeckel,et al.  Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand , 2010 .

[47]  R. Plessix,et al.  Thematic Set: Full waveform inversion of a deep water ocean bottom seismometer dataset , 2010 .

[48]  Roy Edgar Hansen,et al.  The use of synthetic aperture sonar to survey seafloor massive sulfide deposits , 2015 .

[49]  C. German,et al.  Fifty Years of Deep Ocean Exploration With the DSV Alvin , 2014 .

[50]  Timothy H. Dixon,et al.  Bathymetric prediction from Seasat altimeter data , 1983 .

[51]  G. Wefer,et al.  Scientific Drilling with the Sea Floor Drill Rig MeBo , 2007 .

[52]  Kenneth L. Tanaka,et al.  The digital global geologic map of Mars: Chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history☆ , 2014 .

[53]  T. Pape,et al.  Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments , 2008 .

[54]  D. Fabre,et al.  Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS , 2009 .

[55]  M. Talwani,et al.  Gravity Anomalies Seaward of Deep-Sea Trenches and their Tectonic Implications* , 1974 .

[56]  Achim J Kopf,et al.  Initial Results of a new Free Fall-Cone Penetrometer (FF-CPT) for geotechnical in situ characterisation of soft marine sediments , 2006 .