Quasi-Newton methods for multiobjective optimization problems
暂无分享,去创建一个
Hadi Basirzadeh | Latif Pourkarimi | Vahid Morovati | H. Basirzadeh | V. Morovati | Latif Pourkarimi
[1] M. Sakawa,et al. Trade-off rates in the hyperplane method for multiobjective optimization problems , 1990 .
[2] Tridiv Jyoti Neog,et al. A note on fuzzy soft matrices , 2019 .
[3] Gara Miranda,et al. Using multi-objective evolutionary algorithms for single-objective optimization , 2013, 4OR.
[4] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[5] Jianzhon Zhang,et al. Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations , 2001 .
[6] Jörg Fliege,et al. Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..
[7] Antoine Soubeyran,et al. A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes , 2014, J. Optim. Theory Appl..
[8] J. Fliege,et al. Constructing approximations to the efficient set of convex quadratic multiobjective problems , 2004 .
[9] Jörg Fliege. An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems , 2006, Math. Oper. Res..
[10] Yaochu Jin,et al. Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .
[11] B. Svaiter,et al. A steepest descent method for vector optimization , 2005 .
[12] Bing Liang,et al. Trust region methods for solving multiobjective optimisation , 2013, Optim. Methods Softw..
[13] John E. Renaud,et al. Interactive Multiobjective Optimization Procedure , 1999 .
[14] Hadi Basirzadeh,et al. Barzilai and Borwein’s method for multiobjective optimization problems , 2015, Numerical Algorithms.
[15] Matthieu Basseur. Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem , 2006, 4OR.
[16] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[17] Refail Kasimbeyli,et al. Coradiant sets and $$\varepsilon $$ε-efficiency in multiobjective optimization , 2017, J. Glob. Optim..
[18] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[19] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[20] Sanghamitra Bandyopadhyay,et al. Multiobjective GAs, quantitative indices, and pattern classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[21] Luís N. Vicente,et al. Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..
[22] Günter Rudolph,et al. Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions , 2006, PPSN.
[23] C. Hillermeier. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .
[24] Marco Laumanns,et al. Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.
[25] Claus Hillermeier,et al. Nonlinear Multiobjective Optimization , 2001 .
[26] Alfred Göpfert,et al. Vektoroptimierung : Theorie, Verfahren und Anwendungen , 1990 .
[27] H. Kuk,et al. Trade-off analysis for vector optimization problems via scalarization , 1997 .
[28] Jörg Fliege,et al. Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..
[29] Mark Goh,et al. Quasi-Newton methods for solving multiobjective optimization , 2011, Oper. Res. Lett..
[30] Kathrin Klamroth,et al. Norm-Based Approximation in Bicriteria Programming , 2001, Comput. Optim. Appl..
[31] Refail Kasimbeyli,et al. A coradiant based scalarization to characterize approximate solutions of vector optimization problems with variable ordering structures , 2017, Oper. Res. Lett..
[32] Ya-Xiang Yuan,et al. Optimization Theory and Methods: Nonlinear Programming , 2010 .
[33] C. Tammer,et al. Theory of Vector Optimization , 2003 .
[34] H. Basirzadeh,et al. A quick method to calculate the super-efficient point in multi-objective assignment problems , 2014 .
[35] Matthias Ehrgott,et al. Multicriteria Optimization , 2005 .
[36] Alfredo N. Iusem,et al. A Projected Gradient Method for Vector Optimization Problems , 2004, Comput. Optim. Appl..
[37] João C. N. Clímaco,et al. The small world of efficient solutions: empirical evidence from the bi-objective {0,1}-knapsack problem , 2010, 4OR.
[38] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[39] I. Y. Kim,et al. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .
[40] Jingfeng Zhang,et al. New Quasi-Newton Equation and Related Methods for Unconstrained Optimization , 1999 .
[41] Hadi Basirzadeh,et al. A Super Non-dominated Point for Multi-objective Transportation Problem , 2015 .
[42] H. P. Benson,et al. Towards finding global representations of the efficient set in multiple objective mathematical programming , 1997 .
[43] Kaisa Miettinen,et al. Trade-off analysis approach for interactive nonlinear multiobjective optimization , 2012, OR Spectr..
[44] Jörg Fliege,et al. Gap-free computation of Pareto-points by quadratic scalarizations , 2004, Math. Methods Oper. Res..
[45] Ziga Povalej,et al. Quasi-Newton's method for multiobjective optimization , 2014, J. Comput. Appl. Math..