Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

Copper-based ZrCuSiAs-type compounds of LnCuChO ($\mathrm{Ln}=\mathrm{Bi}$ and lanthanides, $\mathrm{Ch}=\mathrm{S}$, Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T \ensuremath{\ge} 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of $\mathrm{B}{\mathrm{i}}_{0.94}\mathrm{P}{\mathrm{b}}_{0.06}\mathrm{CuSeO}$ (BPCSO) with perovskite-type ferroelectric $\mathrm{Pb}(\mathrm{M}{\mathrm{g}}_{1/3}\mathrm{N}{\mathrm{b}}_{2/3}){\mathrm{O}}_{3}\text{\ensuremath{-}}\mathrm{PbTi}{\mathrm{O}}_{3}$ (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

[1]  Hai-Zhou Lu,et al.  Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. , 2017, Nano letters.

[2]  Yu Wang,et al.  Semiconductor/Piezoelectrics Hybrid Heterostructures with Highly Effective Gate-Tunable Electrotransport and Magnetic Behaviors. , 2016, ACS applied materials & interfaces.

[3]  A. L. Ivanovskii,et al.  Novel magnetic materials based on semiconducting 1111 phases: Theory and experiment , 2015, Journal of Structural Chemistry.

[4]  D. Natelson,et al.  Enhancing Electron Coherence via Quantum Phonon Confinement in Atomically Thin Nb$_{3}$SiTe$_{6}$ , 2015, 1504.00297.

[5]  Yu Wang,et al.  Ultrahigh Tunability of Room Temperature Electronic Transport and Ferromagnetism in Dilute Magnetic Semiconductor and PMN‐PT Single‐Crystal‐Based Field Effect Transistors via Electric Charge Mediation , 2015 .

[6]  Q. Xue,et al.  Simultaneous electrical-field-effect modulation of both top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators. , 2015, Nano letters.

[7]  Ce-Wen Nan,et al.  BiCuSeO oxyselenides: new promising thermoelectric materials , 2014 .

[8]  N. Bansal,et al.  Transport properties of topological insulators: Band bending, bulk metal-to-insulator transition, and weak anti-localization , 2014, 1408.1614.

[9]  Anton Van der Ven,et al.  Low-temperature structural and transport anomalies in Cu2Se , 2014 .

[10]  S. Cheong,et al.  Ambipolar transport and magneto-resistance crossover in a Mott insulator, Sr2IrO4 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Haijun Wu,et al.  Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides , 2013 .

[12]  X. Hong,et al.  Examining graphene field effect sensors for ferroelectric thin film studies. , 2013, Nano letters.

[13]  Jinlong Yang,et al.  Control of spin in a La(Mn,Zn)AsO alloy by carrier doping , 2013, 1308.0439.

[14]  Yuanhua Lin,et al.  Enhanced Thermoelectric Properties of Pb‐doped BiCuSeO Ceramics , 2013, Advanced materials.

[15]  W. Pan,et al.  High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO , 2013 .

[16]  Q. Xue,et al.  Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. , 2011, Physical review letters.

[17]  D. Bérardan,et al.  Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials , 2010 .

[18]  Klaus Ensslin,et al.  Suppression of weak antilocalization in InAs nanowires , 2010 .

[19]  V. Harris,et al.  Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures , 2009 .

[20]  R. Kallaher,et al.  Spin and phase coherence measured by antilocalization in n-InSb thin films , 2009 .

[21]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[22]  M. Baenitz,et al.  CeRuPO: A rare example of a ferromagnetic Kondo lattice , 2007, 0704.2170.

[23]  H. Morkoç,et al.  Weak antilocalization and zero-field electron spin splitting in Al x Ga 1 − x N ∕ AlN ∕ GaN heterostructures with a polarization-induced two-dimensional electron gas , 2006, cond-mat/0608254.

[24]  T. Schäpers,et al.  Weak antilocalization in gate-controlledAlxGa1−xN∕GaNtwo-dimensional electron gases , 2006 .

[25]  Hideo Hosono,et al.  Wide-gap layered oxychalcogenide semiconductors: Materials, electronic structures and optoelectronic properties , 2006 .

[26]  T. Kamiya,et al.  Title Single-atomic-layered quantum wells built in wide-gap semiconductors LnCuOCh (Ln=lanthanide, Ch=chalcogen) , 2004 .

[27]  A. A. Sherstobitov,et al.  Weak antilocalization in quantum wells in tilted magnetic fields , 2003, cond-mat/0312074.

[28]  A. Gossard,et al.  Spin-orbit coupling, antilocalization, and parallel magnetic fields in quantum dots. , 2002, Physical review letters.

[29]  A. Gossard,et al.  Gate-controlled spin-orbit quantum interference effects in lateral transport. , 2002, Physical review letters.

[30]  Jonathan P. Bird,et al.  Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures , 2002 .

[31]  Hideaki Takayanagi,et al.  Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. , 2002, Physical review letters.

[32]  H. Hosono,et al.  Transparent p-type semiconductor: LaCuOS layered oxysulfide , 2000 .

[33]  Ahn,et al.  Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films , 1999, Science.

[34]  A. I. Larkin,et al.  Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System , 1980 .