Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices

Theoretical calculation based on detailed balance and incorporating different realistic optical and electrical losses predicts conversion efficiency beyond 22% for single-junction perovskite devices. In dual-junction perovskite/silicon devices, theoretical conversion efficiency around 40% is been determined. However, dramatic drop in the conversion efficiency is shown to be due to the glass reflection and FTO parasitic absorption losses. Additionally, practical conversion efficiency limits of dual-junction two-terminal perovskite/silicon tandem solar cell of 30% are achievable as reported in this work using state-of-the-art demonstrated devices. Additionally, various crystalline silicon (industry and laboratory demonstrated) technologies are used as the bottom cell for the current matched tandem cell stacks with higher relative improvements when using commercial c-Si solar cells. Moreover, the effect of eliminating the parasitic resistances and enhancing the external radiative efficiency (ERE) in the perovskite junction on tandem performance are also investigated enhancing the stack efficiencies.

[1]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[2]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[3]  L. Etgar,et al.  Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells , 2015 .

[4]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[5]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[6]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[7]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[8]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[9]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[10]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[11]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[12]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .

[13]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[14]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[15]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[16]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[17]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[18]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[19]  P. T. Landsberg,et al.  Meteorological effects on solar cells , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Ivan Mora-Sero,et al.  Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[21]  Giovanni Bongiovanni,et al.  Correlated electron–hole plasma in organometal perovskites , 2014, Nature Communications.

[22]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[23]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[24]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[25]  N. Kitazawa,et al.  Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals , 2002 .

[26]  Shenghao Wang,et al.  High performance perovskite solar cells by hybrid chemical vapor deposition , 2014 .

[27]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[28]  M. Green Silicon solar cells: state of the art , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.