OPTIMAL POINT-WISE ERROR ESTIMATE OF A COMPACT FINITE DIFFERENCE SCHEME FOR THE COUPLED NONLINEAR SCHR ¨ ODINGER EQUATIONS *

In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear Schrodinger equation. The proposed scheme not only conserves the total mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h 4 +� 2 ) in the discrete L 1 -norm with time stepand mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme. Mathematics subject classification: 65M06, 65M12.

[1]  Zhi-Zhong Sun,et al.  On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..

[2]  Mehdi Dehghan,et al.  Fourth-order compact solution of the nonlinear Klein-Gordon equation , 2009, Numerical Algorithms.

[3]  Christo I. Christov,et al.  Strong coupling of Schrödinger equations: Conservative scheme approach , 2005, Math. Comput. Simul..

[4]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[5]  Masato Hisakado,et al.  A Coupled Nonlinear Schrodinger Equation and Optical Solitons , 1992 .

[6]  Jiten C. Kalita,et al.  A class of higher order compact schemes for the unsteady two‐dimensional convection–diffusion equation with variable convection coefficients , 2002 .

[7]  Jian-Qiang Sun,et al.  Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system , 2003 .

[8]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[9]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[10]  David W. Zingg,et al.  Comparison of High-Accuracy Finite-Difference Methods for Linear Wave Propagation , 2000, SIAM J. Sci. Comput..

[11]  Xuan Zhao,et al.  A three level linearized compact difference scheme for the Cahn-Hilliard equation , 2011, Science China Mathematics.

[12]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[13]  Luming Zhang,et al.  Numerical simulation of a nonlinearly coupled Schrödinger system: A linearly uncoupled finite difference scheme , 2008, Math. Comput. Simul..

[14]  Thiab R. Taha,et al.  Numerical simulation of coupled nonlinear Schrödinger equation , 2001 .

[15]  Weizhu Bao Ground States and Dynamics of Multicomponent Bose-Einstein Condensates , 2004, Multiscale Model. Simul..

[16]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[17]  Luming Zhang,et al.  Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system , 2009, J. Comput. Appl. Math..

[18]  M. Dehghan,et al.  High-order compact solution of the one-dimensional heat and advection–diffusion equations , 2010 .

[19]  Yanzhi Zhang,et al.  Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation , 2007 .

[20]  Mauricio Sepúlveda,et al.  NUMERICAL METHODS FOR A COUPLED NONLINEAR SCHRÖDINGER SYSTEM , 2008 .

[21]  Shusen Xie,et al.  Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations , 2011 .

[22]  Shusen Xie,et al.  Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation , 2009 .

[23]  Wang Ting,et al.  Unconditional convergence of two conservative compact difference schemes for non-linear Schrdinger equation in one dimension , 2011 .

[24]  Tingchun Wang,et al.  Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schrödinger equations , 2011, J. Comput. Appl. Math..

[25]  Tingchun Wang,et al.  Convergence of an Eighth-Order Compact Difference Scheme for the Nonlinear Schrödinger Equation , 2012, Adv. Numer. Anal..

[26]  Murli M. Gupta,et al.  Convergence of Fourth Order Compact Difference Schemes for Three-Dimensional Convection-Diffusion Equations , 2007, SIAM J. Numer. Anal..

[27]  Zhi-Zhong Sun,et al.  Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..

[28]  M. S. Ismail,et al.  Highly accurate finite difference method for coupled nonlinear Schrödinger equation , 2004, Int. J. Comput. Math..

[29]  C. Menyuk Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes , 1988 .

[30]  Jianke Yang,et al.  Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics , 1999 .

[31]  Bertil Gustafsson,et al.  Time Compact High Order Difference Methods for Wave Propagation , 2004, SIAM J. Sci. Comput..

[32]  Bertil Gustafsson,et al.  Time Compact Difference Methods for Wave Propagation in Discontinuous Media , 2004, SIAM J. Sci. Comput..

[33]  Zhi-zhong Sun,et al.  Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations , 2010 .

[34]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[35]  Tingchun Wang,et al.  Convergence of compact ADI method for solving linear Schrödinger equations , 2012 .

[36]  Tingchun Wang,et al.  Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions , 2013, J. Comput. Phys..

[37]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[38]  C. Menyuk,et al.  Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes. , 1987, Optics letters.

[39]  M. S. Ismail A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[40]  Thiab R. Taha,et al.  A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation , 2007, Math. Comput. Simul..

[41]  M. S. Ismail Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method , 2008, Math. Comput. Simul..

[42]  Ashvin Gopaul,et al.  Analysis of a Fourth-Order Scheme for a Three-Dimensional Convection-Diffusion Model Problem , 2006, SIAM J. Sci. Comput..

[43]  Jichun Li,et al.  Finite Difference Methods for Elliptic Equations , 2008 .

[44]  Hanquan Wang,et al.  A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates , 2007 .