Semidefinite Programming Strong Converse Bounds for Classical Capacity

We investigate the classical communication over quantum channels when assisted by no-signaling and positive-partial-transpose-preserving (PPT) codes, for which both the optimal success probability of a given transmission rate and the one-shot $\epsilon $ -error capacity are formalized as semidefinite programs (SDPs). Based on this, we obtain improved SDP finite blocklength converse bounds of general quantum channels for entanglement-assisted codes and unassisted codes. Furthermore, we derive two SDP strong converse bounds for the classical capacity of general quantum channels: for any code with a rate exceeding either of the two bounds of the channel, the success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bounds, we derive an improved upper bound on the classical capacity of the amplitude damping channel. We also establish the strong converse property for the classical and private capacities of a new class of quantum channels. We finally study the zero-error setting and provide efficiently computable upper bounds on the one-shot zero-error capacity of a general quantum channel.

[1]  Vincent Y. F. Tan,et al.  Moderate Deviation Analysis for Classical Communication over Quantum Channels , 2017, Communications in Mathematical Physics.

[2]  Mario Berta,et al.  The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.

[3]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[4]  Min-Hsiu Hsieh,et al.  Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing , 2017, IEEE Transactions on Information Theory.

[5]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[6]  Jürg Wullschleger,et al.  Unconditional Security From Noisy Quantum Storage , 2009, IEEE Transactions on Information Theory.

[7]  Simone Severini,et al.  On Zero-Error Communication via Quantum Channels in the Presence of Noiseless Feedback , 2015, IEEE Transactions on Information Theory.

[8]  Mark M. Wilde,et al.  Strong converse for the classical capacity of the pure-loss bosonic channel , 2014, Probl. Inf. Transm..

[9]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[10]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[11]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[12]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[13]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[14]  D. Leung,et al.  Entanglement can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels , 2010, Communications in Mathematical Physics.

[15]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[16]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[17]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[18]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[19]  Salman Beigi,et al.  Decoding quantum information via the Petz recovery map , 2015, ArXiv.

[20]  M. Christandl,et al.  Relative Entropy Bounds on Quantum, Private and Repeater Capacities , 2016, Communications in Mathematical Physics.

[21]  Runyao Duan,et al.  Non-Asymptotic Entanglement Distillation , 2017, IEEE Transactions on Information Theory.

[22]  Runyao Duan,et al.  Nonadditivity of Rains' bound for distillable entanglement , 2016, 1605.00348.

[23]  William Matthews,et al.  A Linear Program for the Finite Block Length Converse of Polyanskiy–Poor–Verdú Via Nonsignaling Codes , 2011, IEEE Transactions on Information Theory.

[24]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[25]  William Matthews,et al.  On the Power of PPT-Preserving and Non-Signalling Codes , 2014, IEEE Transactions on Information Theory.

[26]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[27]  J Eisert,et al.  Entangled inputs cannot make imperfect quantum channels perfect. , 2010, Physical review letters.

[28]  V. Giovannetti,et al.  Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.

[29]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[30]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[31]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[32]  Runyao Duan,et al.  Indistinguishability of bipartite states by positive-partial-transpose operations in the many-copy scenario , 2017, 1702.00231.

[33]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[34]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[35]  Graeme Smith,et al.  An Extreme Form of Superactivation for Quantum Zero-Error Capacities , 2009, IEEE Transactions on Information Theory.

[36]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[37]  Debbie W. Leung,et al.  Improving zero-error classical communication with entanglement , 2009, Physical review letters.

[38]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[39]  Mark M. Wilde,et al.  Squashed entanglement and approximate private states , 2016, Quantum Inf. Process..

[40]  Runyao Duan,et al.  A semidefinite programming upper bound of quantum capacity , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[41]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[42]  M. Fukuda Extending additivity from symmetric to asymmetric channels , 2005, quant-ph/0505022.

[43]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[44]  J. Wolfowitz Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.

[45]  Ning Cai,et al.  Quantum privacy and quantum wiretap channels , 2004, Probl. Inf. Transm..

[46]  Nengkun Yu,et al.  Maximum privacy without coherence, zero-error , 2015, 1509.01300.

[47]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[48]  Wei Xie,et al.  Semidefinite programming converse bounds for classical communication over quantum channels , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[49]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[50]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[51]  Debbie W. Leung,et al.  Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.

[52]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[53]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[54]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[55]  Runyao Duan,et al.  Activated zero-error classical capacity of quantum channels in the presence of quantum no-signalling correlations , 2015, ArXiv.

[56]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[57]  Ke Li,et al.  Maximal privacy without coherence. , 2014, Physical review letters.

[58]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[59]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[60]  Jianxin Chen,et al.  Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel , 2009, IEEE Transactions on Information Theory.

[61]  Runyao Duan,et al.  No-Signalling-Assisted Zero-Error Capacity of Quantum Channels and an Information Theoretic Interpretation of the Lovász Number , 2014, IEEE Transactions on Information Theory.

[62]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[63]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[64]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[65]  M. Horodecki,et al.  Properties of quantum nonsignaling boxes , 2006 .

[66]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[67]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[68]  Peter W. Shor,et al.  The Additivity Conjecture in Quantum Information Theory , 2005 .

[69]  Nilanjana Datta,et al.  One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.

[70]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[71]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[72]  Runyao Duan,et al.  Entanglement between two uses of a noisy multipartite quantum channel enables perfect transmission of classical information. , 2008, Physical review letters.

[73]  Xiaodi Wu,et al.  An Improved Semidefinite Programming Hierarchy for Testing Entanglement , 2015, ArXiv.

[74]  R. Werner,et al.  Semicausal operations are semilocalizable , 2001, quant-ph/0104027.

[75]  Simone Severini,et al.  Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number , 2010, IEEE Transactions on Information Theory.

[76]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[77]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[78]  Runyao Duan,et al.  Approximate broadcasting of quantum correlations , 2017, 1705.06071.

[79]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[80]  Runyao Duan,et al.  Improved semidefinite programming upper bound on distillable entanglement , 2016, 1601.07940.

[81]  Runyao Duan,et al.  Separation Between Quantum Lovász Number and Entanglement-Assisted Zero-Error Classical Capacity , 2016, IEEE Transactions on Information Theory.

[82]  Nilanjana Datta,et al.  ADDITIVITY FOR TRANSPOSE DEPOLARIZING CHANNELS , 2004 .

[83]  Salman Beigi,et al.  On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels , 2007, 0709.2090.