Euclidean distortion and the sparsest cut

We prove that every n-point metric space of negative type (in particular, every n-point subset of L1) embeds into a Euclidean space with distortion O(√log n log log n), a result which is tight up to the O(log log n) factor. As a consequence, we obtain the best known polynomial-time approximation algorithm for the Sparsest Cut problem with general demands. If the demand is supported on a subset of size k, we achieve an approximation ratio of O(√log k log log k).

[1]  P. Enflo On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .

[2]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[3]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[4]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[5]  B. Mityagin,et al.  Uniform embeddings of metric spaces and of banach spaces into hilbert spaces , 1985 .

[6]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[7]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[8]  C. Morawetz The Courant Institute of Mathematical Sciences , 1988 .

[9]  R. Ravi,et al.  Approximation through multicommodity flow , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[10]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[11]  N Linial,et al.  Low diameter graph decompositions , 1993, Comb..

[12]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  David B. Shmoys,et al.  Cut problems and their application to divide-and-conquer , 1996 .

[14]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[15]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[16]  M. Goemans Semidefinite programming and combinatorial optimization , 1998 .

[17]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[18]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[19]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[20]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[21]  Yuval Rabani,et al.  Approximation algorithms for the 0-extension problem , 2001, SODA '01.

[22]  G. Schechtman,et al.  Remarks on non linear type and Pisier's inequality , 2002 .

[23]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[24]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[25]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[26]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[27]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[28]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[29]  Sanjeev Arora,et al.  O(/spl radic/log n) approximation to SPARSEST CUT in O/spl tilde/(n/sup 2/) time , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[30]  A. Naor,et al.  Euclidean quotients of finite metric spaces , 2004, math/0406349.

[31]  James R. Lee,et al.  Metric Structures in L1: Dimension, Snowflakes, and Average Distortion , 2004, LATIN.

[32]  Elad Hazan,et al.  O(√log n) approximation to SPARSEST CUT in Õ(n 2) time , 2004, IEEE Annual Symposium on Foundations of Computer Science.

[33]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[34]  Robert Krauthgamer,et al.  Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.

[35]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[36]  Sanjeev Arora,et al.  O( p logn) Approximation to Sparsest Cut in O(n2) Time , 2004, FOCS 2004.

[37]  Sanjeev Arora,et al.  0(sqrt (log n)) Approximation to SPARSEST CUT in Õ(n2) Time , 2004, FOCS.

[38]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[39]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[40]  A. Sinclair,et al.  Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs , 2005 .

[41]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[42]  James R. Lee,et al.  Metric structures in L1: dimension, snowflakes, and average distortion , 2005, Eur. J. Comb..

[43]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[44]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[45]  Y. Rabani,et al.  Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.

[46]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2009, SODA '06.

[47]  James R. Lee,et al.  Fréchet Embeddings of Negative Type Metrics , 2007, Discret. Comput. Geom..