Power series representing algebraic functions

[1]  Jean-Paul Allouche,et al.  Note sur un article de Sharif et Woodcock , 1989 .

[2]  Richard Mollin,et al.  Rational Functions, Diagonals, Automata and Arithmetic , 1990 .

[3]  P. Deligne,et al.  Intégration sur un cycle évanescent , 1984 .

[4]  L. Lipshitz,et al.  D-finite power series , 1989 .

[5]  A. J. Poorten,et al.  Arithmetic properties of automata: regular sequences. , 1988 .

[6]  P. Dienes,et al.  The Taylor Series. , 1932 .

[7]  Chris F. Woodcock,et al.  On the transcendence of certain series , 1989 .

[8]  N. M. Katz Algebraic solutions of differential equations (p-curvature and the Hodge filtration) , 1972 .

[9]  Alfred J. van der Poorten,et al.  A proof that Euler missed ... , 1979 .

[10]  Yuval Z. Flicker,et al.  Algebraic independence by a method of Mahler , 1979, Journal of the Australian Mathematical Society.

[11]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[12]  Bernard Dwork,et al.  On natural radii of $p$-adic convergence , 1979 .

[13]  G. Rauzy,et al.  Suites algébriques, automates et substitutions , 1980 .

[14]  C. Chevalley,et al.  Introduction to the theory of algebraic functions of one variable , 1951 .

[15]  Alfred J. van der Poorten,et al.  The Eisenstein constant , 1992 .

[16]  L. Lipshitz,et al.  Algebraic power series and diagonals , 1987 .

[17]  Harry Furstenberg,et al.  Algebraic functions over finite fields , 1967 .

[18]  Wolfgang M. Schmidt Eisenstein's theorem on power series expansions of algebraic functions , 1990 .