A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA.

Direct evidence is presented for a conformational switch in 16S ribosomal RNA (rRNA) that affects tRNA binding to the ribosome and decoding of messenger RNA (mRNA). These data support the hypothesis that dynamic changes in rRNA structure occur during translation. The switch involves two alternating base-paired arrangements apparently facilitated by ribosomal proteins S5 and S12, and produces significant changes in the rRNA structure. Chemical probing shows reciprocal enhancements or protections at sites in 16S rRNA that are at or very near sites that were previously crosslinked to mRNA. These data indicate that the switch affects codon-anticodon arrangement and proper selection of tRNA at the ribosomal A site, and that the switch is a fundamental mechanism in all ribosomes.

[1]  T. Pape,et al.  Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[2]  Y. Chernoff,et al.  Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. , 1994, The EMBO journal.

[3]  P. Mitchell,et al.  The decoding region of 16S RNA; a cross‐linking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. , 1994, The EMBO journal.

[4]  T. Cech,et al.  Movement of the guide sequence during RNA catalysis by a group I ribozyme. , 1993, Science.

[5]  W. Hill,et al.  Probing dynamic changes in rRNA conformation in the 30S subunit of the Escherichia coli ribosome. , 1992, Biochemistry.

[6]  R. Brimacombe,et al.  The path of mRNA through the bacterial ribosome: a site-directed crosslinking study using new photoreactive derivatives of guanosine and uridine. , 1997, RNA.

[7]  Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding. , 1995, Journal of molecular biology.

[8]  R. Amils,et al.  Location of the streptomycin ribosomal binding site explains its pleiotropic effects on protein biosynthesis. , 1994, Journal of Molecular Biology.

[9]  R. Brimacombe,et al.  A detailed model of the three-dimensional structure of Escherichia coli 16 S ribosomal RNA in situ in the 30 S subunit. , 1988, Journal of molecular biology.

[10]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[11]  R. Miskin,et al.  Inactivation and reactivation of ribosomal subunits: amino acyl-transfer RNA binding activity of the 30 s subunit of Escherichia coli. , 1971, Journal of molecular biology.

[12]  R. Gutell,et al.  Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Noller,et al.  Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli. , 1989, Journal of molecular biology.

[14]  M. Ehrenberg,et al.  Dissociation rates of peptidyl‐tRNA from the P‐site of E.coli ribosomes. , 1996, The EMBO journal.

[15]  D. V. Van Ryk,et al.  Structural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity. , 1995, Nucleic acids research.

[16]  C. Kurland,et al.  Functional interactions between mutated forms of ribosomal proteins S4, S5 and S12. , 1986, Biochimie.

[17]  A. E. Dahlberg,et al.  Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Gutell,et al.  Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. , 1983, Microbiological reviews.

[19]  S. Stern,et al.  Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit , 1994, Nature.

[20]  R. Brimacombe,et al.  Site-directed cross-linking of mRNA analogues to 16S ribosomal RNA; a complete scan of cross-links from all positions between '+1' and '+16' on the mRNA, downstream from the decoding site. , 1993, Nucleic acids research.

[21]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[22]  R. Brimacombe,et al.  An experimentally-derived model for the secondary structure of the 16S ribosomal RNA from Escherichia coli. , 1980, Nucleic acids research.

[23]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[24]  E. Goldman,et al.  Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Noller,et al.  A cold-sensitive mutation in 16S rRNA provides evidence for helical switching in ribosome assembly. , 1993, Genes & development.

[26]  H. Rheinberger,et al.  The ribosomal elongation cycle: tRNA binding, translocation and tRNA release. , 1983, European journal of biochemistry.

[27]  H. A. Boer,et al.  Formation of the central pseudoknot in 16S rRNA is essential for initiation of translation. , 1993, The EMBO journal.

[28]  H. Noller,et al.  Site-Directed Hydroxyl Radical Probing of the rRNA Neighborhood of Ribosomal Protein S5 , 1996, Science.

[29]  M. O'Connor,et al.  A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. , 1992, Nucleic acids research.

[30]  R. Brimacombe,et al.  Three widely separated positions in the 16S RNA lie in or close to the ribosomal decoding region; a site‐directed cross‐linking study with mRNA analogues. , 1992, The EMBO journal.

[31]  H. Noller,et al.  Interconversion of active and inactive 30 S ribosomal subunits is accompanied by a conformational change in the decoding region of 16 S rRNA. , 1986, Journal of molecular biology.

[32]  H. Noller,et al.  Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. , 1995, RNA.

[33]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Noller,et al.  Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA. , 1989, Journal of molecular biology.

[36]  J. Frank,et al.  Direct Visualization of A-, P-, and E-Site Transfer RNAs in the Escherichia coli Ribosome , 1996, Science.

[37]  S. Watanabe Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. , 1972, Journal of molecular biology.

[38]  H. Noller,et al.  A functional pseudoknot in 16S ribosomal RNA. , 1991, The EMBO journal.

[39]  R. Brimacombe,et al.  From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. , 1995, RNA.

[40]  M. Ehrenberg,et al.  Ribosomal RNA and protein mutants resistant to spectinomycin. , 1990, The EMBO journal.

[41]  Harry F. Noller,et al.  Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes , 1986, Cell.

[42]  M Yarus,et al.  Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. , 1989, Journal of molecular biology.

[43]  H. Noller,et al.  Unusual resistance of peptidyl transferase to protein extraction procedures. , 1992, Science.

[44]  H. Noller,et al.  RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. , 1989, Science.

[45]  M. Ehrenberg,et al.  tRNA-ribosome interactions. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[46]  D. Moras,et al.  Crystallization and preliminary X-ray data of a phleomycin-binding protein from Streptoalloteichus hindustanus. , 1989, Journal of molecular biology.

[47]  L. Brakier-Gingras,et al.  Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli. , 1987, Biochemistry.

[48]  W. Tapprich,et al.  Pseudoknot in the central domain of small subunit ribosomal RNA is essential for translation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Gutell,et al.  Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. , 1994, Microbiological reviews.

[50]  J Frank,et al.  Three-dimensional reconstruction of the Escherichia coli 30 S ribosomal subunit in ice. , 1996, Journal of molecular biology.

[51]  M. Laughrea,et al.  In vivo chemical footprinting of the Escherichia coli ribosome. , 1992, Biochemistry.