Electrospinning: A Facile Method to Disperse Fluorescent Quantum Dots in Nanofibers without Förster Resonance Energy Transfer

Fluorescent CdTe quantum dots (QDs) can be dispersed into poly(vinyl alcohol) (PVA) solid nanofibers by electrospinning of a QD–PVA blend solution. Although solution blending methods usually cause phase separation as the solvent evaporates; here, attractively, the QDs do not aggregate, on the contrary, they attain a separation and distribution in the PVA matrix that is as good and uniform as that in solution. Consequently, Forster resonance energy transfer (FRET) between QDs is efficiently avoided, leading to the good preservation of the original fluorescence properties of QDs even when multi-color QDs are incorporated. Thus, the emission color of the solid nanofibers can be well predicted from the electrospinning solution. Further investigation reveals that the fast evaporation rate of the solvent in the electrospinning process lies at the basis of the uniform distribution of the QDs. Because of the quick “freezing” of the polymer chains, the CdTe QDs are confined to their places with no time to aggregate.

[1]  Gary E. Wnek,et al.  Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers , 2003 .

[2]  P. Liljeroth,et al.  Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. , 2006, Journal of the American Chemical Society.

[3]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[4]  E. W. Edwards,et al.  Directing the self-assembly of nanocrystals beyond colloidal crystallization. , 2006, Physical chemistry chemical physics : PCCP.

[5]  Hao Zhang,et al.  Easy preparation and characterization of highly fluorescent polymer composite microspheres from aqueous CdTe nanocrystals. , 2006, Journal of colloid and interface science.

[6]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[7]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[8]  Fluorescent Nanocrystal–Polymer Complexes with Flexible Processability , 2005 .

[9]  Younan Xia,et al.  Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer‐by‐Layer Stacked Films , 2004 .

[10]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[11]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[12]  Nancy G. Tassi,et al.  Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process , 2004 .

[13]  Liwei Lin,et al.  Near-field electrospinning. , 2006, Nano letters.

[14]  H. Möhwald,et al.  Fabrication of Multicolor‐Encoded Microspheres by Tagging Semiconductor Nanocrystals to Hydrogel Spheres , 2005 .

[15]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .

[16]  Mingyuan Gao,et al.  From Water‐Soluble CdTe Nanocrystals to Fluorescent Nanocrystal–Polymer Transparent Composites Using Polymerizable Surfactants , 2003 .

[17]  Shaobin Wang,et al.  Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. , 2006, Journal of colloid and interface science.

[18]  Klavs F. Jensen,et al.  Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites , 2000 .

[19]  F. Lai,et al.  EHD-Enhanced Water Evaporation , 2004 .

[20]  L. Daza,et al.  PEMFC electrode preparation: Influence of the solvent composition and evaporation rate on the catalytic layer microstructure , 2005 .

[21]  Arthur J. Nozik,et al.  Optical, Electronic, and Structural Properties of Uncoupled and Close-Packed Arrays of InP Quantum Dots , 1998 .

[22]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[23]  W. Park,et al.  In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide‐co‐glycolide) , 2005 .

[24]  U. Schubert,et al.  Inkjet Printing of Luminescent CdTe Nanocrystal–Polymer Composites , 2007 .

[25]  Peidong Yang,et al.  Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides , 2003 .

[26]  M. Dresselhaus,et al.  Electronic transport properties of single-crystal bismuth nanowire arrays , 2000 .

[27]  Thomas A. Klar,et al.  Exciton Recycling in Graded Gap Nanocrystal Structures , 2004 .

[28]  Ce Wang,et al.  Fabrication of PbS Nanoparticles in Polymer‐Fiber Matrices by Electrospinning , 2005 .

[29]  B. Ding,et al.  Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method , 2002 .

[30]  Yeshaiahu Fainman,et al.  Photosensitive quantum dot composites and their applications in optical structures , 2005 .

[31]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[32]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[33]  Robert Jones,et al.  Electrospun fibers from poly(methyl methacrylate)/vapor grown carbon nanofibers , 2006 .

[34]  Cengiz S. Ozkan,et al.  Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications , 2003 .

[35]  J. S. Stephens,et al.  Effect of the Electrospinning Process on Polymer Crystallization Chain Conformation in Nylon-6 and Nylon-12 , 2004 .

[36]  V. Bulović,et al.  Large‐Area Ordered Quantum‐Dot Monolayers via Phase Separation During Spin‐Casting , 2005 .

[37]  Arthur J. Nozik,et al.  Synthesis and Characterization of Surface-Modified Colloidal CdTe Quantum Dots , 1993 .

[38]  Leon M Bellan,et al.  Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. , 2006, Small.

[39]  Lih Y. Lin,et al.  Subdiffraction photon guidance by quantum-dot cascades. , 2006, Nano letters.

[40]  Y. Liu,et al.  Highly Photoluminescent CdTe/Poly(N‐isopropylacrylamide) Temperature‐Sensitive Gels , 2005 .

[41]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .