Computationalanalysisofmembraneproteins: genomicoccurrence,structurepredictionand helixinteractions

We review recent computational advances in the study of membrane proteins, focusing on those that have at least one transmembrane helix. Transmembrane protein regions are, in many respects, easier to investigate computationally than experimentally, due to the uniformity of their structure and interactions (e.g. consisting predominately of nearly parallel helices packed together) on one hand and presenting the challenges of solubility on the other. We present the progress made on identifying and classifying membrane proteins into families, predicting their structure from amino-acid sequence patterns (using many different methods), and analyzing their interactions and packing. The total result of this work allows us for the first time to begin to think about the membrane protein interactome, the set of all interactions between distinct transmembrane helices in the lipid bilayer.

[1]  Emile Zuckerkandl,et al.  The appearance of new structures and functions in proteins during evolution , 1975, Journal of Molecular Evolution.

[2]  M. Gerstein,et al.  Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Gerstein,et al.  Comparative analysis of processed pseudogenes in the mouse and human genomes. , 2004, Trends in genetics : TIG.

[4]  M. Gerstein,et al.  TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. , 2004, Nucleic acids research.

[5]  M. Gerstein,et al.  Integration of genomic datasets to predict protein complexes in yeast , 2004, Journal of Structural and Functional Genomics.

[6]  C. Brooks,et al.  An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. , 2003, Biophysical journal.

[7]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[8]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[9]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[10]  T. Lazaridis Effective energy function for proteins in lipid membranes , 2003, Proteins.

[11]  M. Gerstein,et al.  The human genome has 49 cytochrome c pseudogenes, including a relic of a primordial gene that still functions in mouse. , 2003, Gene.

[12]  David R. Westhead,et al.  Calculation of Helix Packing Angles in Protein Structures , 2003, Bioinform..

[13]  S. Wodak,et al.  Assessment of blind predictions of protein–protein interactions: Current status of docking methods , 2003, Proteins.

[14]  Yaoqi Zhou,et al.  Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method , 2003 .

[15]  James U Bowie,et al.  A simple method for modeling transmembrane helix oligomers. , 2003, Journal of molecular biology.

[16]  M. Levitt,et al.  A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics. , 2003, Journal of molecular biology.

[17]  A. Krogh,et al.  Reliability measures for membrane protein topology prediction algorithms. , 2003, Journal of molecular biology.

[18]  Jie Liang,et al.  Higher-order interhelical spatial interactions in membrane proteins. , 2003, Journal of molecular biology.

[19]  D. T. Jones,et al.  Folding in lipid membranes (FILM): A novel method for the prediction of small membrane protein 3D structures , 2003, Proteins.

[20]  Mark Gerstein,et al.  Identification of pseudogenes in the Drosophila melanogaster genome. , 2003, Nucleic acids research.

[21]  M. Gerstein,et al.  Ontologies for proteomics: towards a systematic definition of structure and function that scales to the genome level. , 2003, Current opinion in chemical biology.

[22]  Donald M. Engelman,et al.  GALLEX, a Measurement of Heterologous Association of Transmembrane Helices in a Biological Membrane* , 2003, The Journal of Biological Chemistry.

[23]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[24]  A. Kernytsky,et al.  Transmembrane helix predictions revisited , 2002, Protein science : a publication of the Protein Society.

[25]  F Seno,et al.  Optimal potentials for predicting inter‐helical packing in transmembrane proteins , 2002, Proteins.

[26]  Chern-Sing Goh,et al.  Co-evolutionary analysis reveals insights into protein-protein interactions. , 2002, Journal of molecular biology.

[27]  F. Cordes,et al.  Proline-induced distortions of transmembrane helices. , 2002, Journal of molecular biology.

[28]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[29]  M Gerstein,et al.  GeneCensus: genome comparisons in terms of metabolic pathway activity and protein family sharing. , 2002, Nucleic acids research.

[30]  M. Gerstein,et al.  Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. , 2002, Genome research.

[31]  M. Gerstein,et al.  Genomic analysis of membrane protein families: abundance and conserved motifs , 2002, Genome Biology.

[32]  Sarel J Fleishman,et al.  A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane alpha-helices. , 2002, Journal of molecular biology.

[33]  K. Nishikawa,et al.  A systematic investigation identifies a significant number of probable pseudogenes in the Escherichia coli genome. , 2002, Gene.

[34]  Philippe Dessen,et al.  Structure and chromosomal distribution of human mitochondrial pseudogenes. , 2002, Genomics.

[35]  Mark Gerstein,et al.  Calculations of protein volumes: sensitivity analysis and parameter database , 2002, Bioinform..

[36]  M. Woischnik,et al.  Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. , 2002, Genome research.

[37]  A. Valencia,et al.  Computational methods for the prediction of protein interactions. , 2002, Current opinion in structural biology.

[38]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[39]  D. Juretic,et al.  Basic Charge Clusters and Predictions of Membrane Protein Topology , 2002, J. Chem. Inf. Comput. Sci..

[40]  Markus Eilers,et al.  Comparison of Helix Interactions in Membrane and Soluble α-Bundle Proteins , 2002 .

[41]  A. Valencia,et al.  In silico two‐hybrid system for the selection of physically interacting protein pairs , 2002, Proteins.

[42]  David Eisenberg,et al.  GXXXG and AXXXA: Common α-Helical Interaction Motifs in Proteins, Particularly in Extremophiles† , 2002 .

[43]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[44]  Mark Gerstein,et al.  A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. , 2002, Journal of molecular biology.

[45]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[46]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[47]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Perry L. Miller,et al.  Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences , 2002, Nucleic Acids Res..

[49]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[50]  B. Rost,et al.  State-of-the-art in membrane protein prediction. , 2002, Applied bioinformatics.

[51]  D. DiMaio,et al.  Mechanisms of cell transformation by papillomavirus E5 proteins , 2001, Oncogene.

[52]  D. Eisenberg,et al.  3D structure and significance of the GPhiXXG helix packing motif in tetramers of the E1beta subunit of pyruvate dehydrogenase from the archeon Pyrobaculum aerophilum. , 2001, Biochemistry.

[53]  S H White,et al.  Energetics, stability, and prediction of transmembrane helices. , 2001, Journal of molecular biology.

[54]  Mark Gerstein,et al.  Determining the minimum number of types necessary to represent the sizes of protein atoms , 2001, Bioinform..

[55]  A. Valencia,et al.  Similarity of phylogenetic trees as indicator of protein-protein interaction. , 2001, Protein engineering.

[56]  Jie Liang,et al.  Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. , 2001, Journal of molecular biology.

[57]  J. Briggs,et al.  A new method to model membrane protein structure based on silent amino acid substitutions , 2001, Proteins.

[58]  W. B. Church,et al.  Modeling of the structural features of integral‐membrane proteins reverse‐environment prediction of integral membrane protein structure (REPIMPS) , 2001, Protein science : a publication of the Protein Society.

[59]  Alessandro Senes,et al.  The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Rolf Apweiler,et al.  Evaluation of methods for the prediction of membrane spanning regions , 2001, Bioinform..

[61]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[62]  Richard Bonneau,et al.  Ab initio protein structure prediction: progress and prospects. , 2001, Annual review of biophysics and biomolecular structure.

[63]  Michael Krauthammer,et al.  GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles , 2001, ISMB.

[64]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[65]  Gustavo Glusman,et al.  The complete human olfactory subgenome. , 2001, Genome research.

[66]  W G Krebs,et al.  PartsList: a web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information. , 2001, Nucleic acids research.

[67]  D. Eisenberg,et al.  Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins. , 2001, Journal of molecular biology.

[68]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[69]  A. Aronheim,et al.  A novel approach for the identification of protein-protein interaction with integral membrane proteins. , 2001, Nucleic acids research.

[70]  M. Gerstein,et al.  Digging for dead genes: an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome. , 2001, Nucleic acids research.

[71]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[72]  A J Cuticchia,et al.  TM Finder: A prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales , 2001, Protein science : a publication of the Protein Society.

[73]  A. Lesk,et al.  Assessment of novel fold targets in CASP4: Predictions of three‐dimensional structures, secondary structures, and interresidue contacts , 2001, Proteins.

[74]  Masami Ikeda,et al.  Transmembrane topology prediction methods: A re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topology , 2001, Silico Biol..

[75]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[76]  P E Bourne,et al.  The Protein Data Bank. , 2002, Nucleic acids research.

[77]  G von Heijne,et al.  Consensus predictions of membrane protein topology , 2000, FEBS letters.

[78]  N. Johnsson,et al.  A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  H. Dohlman,et al.  Use of G-protein fusions to monitor integral membrane protein–protein interactions in yeast , 2000, Nature Biotechnology.

[80]  M Gerstein,et al.  Genome-wide analysis relating expression level with protein subcellular localization. , 2000, Trends in genetics : TIG.

[81]  I. Paulsen,et al.  Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.

[82]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[83]  D. Birnbaum,et al.  ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor , 2000, Nature Cell Biology.

[84]  D. Eisenberg,et al.  Protein function in the post-genomic era , 2000, Nature.

[85]  F. Cohen,et al.  Co-evolution of proteins with their interaction partners. , 2000, Journal of molecular biology.

[86]  G. R. Smith,et al.  Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. , 2000, Biophysical journal.

[87]  S. O. Smith,et al.  Internal packing of helical membrane proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M. Bansal,et al.  HELANAL: A Program to Characterize Helix Geometry in Proteins , 2000, Journal of biomolecular structure & dynamics.

[89]  Pietro Liò,et al.  Wavelet change-point prediction of transmembrane proteins , 2000, Bioinform..

[90]  M Gerstein,et al.  Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. , 2000, Nucleic acids research.

[91]  D. Engelman,et al.  The GxxxG motif: a framework for transmembrane helix-helix association. , 2000, Journal of molecular biology.

[92]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[93]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[94]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[95]  L. Amaral,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[97]  M Gerstein,et al.  Protein folds in the worm genome. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[98]  S. Kim,et al.  Mitochondrial cytochrome bc1 complex. , 2000, Sub-cellular biochemistry.

[99]  D. Engelman,et al.  Helical membrane protein folding, stability, and evolution. , 2000, Annual review of biochemistry.

[100]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 2000, Nucleic Acids Res..

[101]  N. Ben-Tal,et al.  kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. , 1999, Journal of molecular biology.

[102]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[103]  B. Rost,et al.  Effective use of sequence correlation and conservation in fold recognition. , 1999, Journal of molecular biology.

[104]  Gunnar von Heijne,et al.  Recent advances in the understanding of membrane protein assembly and structure , 1999, Quarterly Reviews of Biophysics.

[105]  D. Engelman,et al.  Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. , 1999, Journal of molecular biology.

[106]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[107]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[108]  S. O. Smith,et al.  Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. , 1999, Biophysical journal.

[109]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[110]  M De Maeyer,et al.  Guiding a docking mode by phage display: selection of correlated mutations at the staphylokinase-plasmin interface. , 1999, Journal of molecular biology.

[111]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[112]  S J Hamodrakas,et al.  A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. , 1999, Protein engineering.

[113]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[114]  D. Engelman,et al.  TOXCAT: a measure of transmembrane helix association in a biological membrane. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[115]  A. Varshavsky,et al.  Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum. , 1999, Molecular biology of the cell.

[116]  E. Hovig,et al.  Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase‐polymerase chain reaction assays used to detect micrometastatic tumor cells , 1999, International journal of cancer.

[117]  J U Bowie,et al.  Helix‐bundle membrane protein fold templates , 1999, Protein science : a publication of the Protein Society.

[118]  Garland R. Marshall,et al.  A potential smoothing algorithm accurately predicts transmembrane helix packing , 1999, Nature Structural Biology.

[119]  J. Skolnick,et al.  Ab initio folding of proteins using restraints derived from evolutionary information , 1999, Proteins.

[120]  H Nielsen,et al.  Machine learning approaches for the prediction of signal peptides and other protein sorting signals. , 1999, Protein engineering.

[121]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[122]  A. Brunger,et al.  Statistical analysis of predicted transmembrane α-helices , 1998 .

[123]  F E Cohen,et al.  Helix‐helix packing angle preferences for finite helix axes , 1998, Proteins.

[124]  S. O. Smith,et al.  Structural models of the bovine papillomavirus E5 protein , 1998, Proteins.

[125]  M. Gerstein Patterns of protein‐fold usage in eight microbial genomes: A comprehensive structural census , 1998, Proteins.

[126]  G. Tusnády,et al.  Principles governing amino acid composition of integral membrane proteins: application to topology prediction. , 1998, Journal of molecular biology.

[127]  A. Aronheim,et al.  The Ras recruitment system, a novel approach to the study of protein–protein interactions , 1998, Current Biology.

[128]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[129]  Sung-Hou Kim,et al.  Electron transfer by domain movement in cytochrome bc1 , 1998, Nature.

[130]  M H Saier,et al.  Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. , 1998, Journal of molecular biology.

[131]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[132]  David T. Jones Do transmembrane protein superfolds exist? , 1998, FEBS letters.

[133]  J. Beckwith,et al.  How many membrane proteins are there? , 1998, Protein science : a publication of the Protein Society.

[134]  Shigeki Mitaku,et al.  SOSUI: classification and secondary structure prediction system for membrane proteins , 1998, Bioinform..

[135]  M Gerstein,et al.  A structural census of genomes: comparing bacterial, eukaryotic, and archaeal genomes in terms of protein structure. , 1997, Journal of molecular biology.

[136]  F E Cohen,et al.  Identification of functional surfaces of the zinc binding domains of intracellular receptors. , 1997, Journal of molecular biology.

[137]  S. Atwell,et al.  Structural plasticity in a remodeled protein-protein interface. , 1997, Science.

[138]  James U. Bowie,et al.  Helix packing angle preferences , 1997, Nature Structural Biology.

[139]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[140]  R. Lamb,et al.  A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[141]  J U Bowie,et al.  Helix packing in membrane proteins. , 1997, Journal of molecular biology.

[142]  D. Engelman,et al.  The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. , 1997, Journal of molecular biology.

[143]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[144]  A T Brünger,et al.  Are there dominant membrane protein families with a given number of helices? , 1997, Proteins.

[145]  A Elofsson,et al.  Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. , 1997, Protein engineering.

[146]  A. Valencia,et al.  Improving contact predictions by the combination of correlated mutations and other sources of sequence information. , 1997, Folding & design.

[147]  A. Lomize,et al.  The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. , 1997, Biophysical journal.

[148]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[149]  H. Michel,et al.  Crystallization of membrane proteins. , 1983, Current opinion in structural biology.

[150]  A M Lesk,et al.  CASP2: Report on ab initio predictions , 1997, Proteins.

[151]  A. Valencia,et al.  Conserved Clusters of Functionally Related Genes in Two Bacterial Genomes , 1997, Journal of Molecular Evolution.

[152]  H. Fritz,et al.  Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. , 1996, Journal of molecular biology.

[153]  D. Engelman,et al.  Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching , 1996, Proteins.

[154]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[155]  Stephen H. White,et al.  Experimentally determined hydrophobicity scale for proteins at membrane interfaces , 1996, Nature Structural Biology.

[156]  K. J. Fryxell,et al.  The coevolution of gene family trees. , 1996, Trends in genetics : TIG.

[157]  B. Rost,et al.  Topology prediction for helical transmembrane proteins at 86% accuracy–Topology prediction at 86% accuracy , 1996, Protein science : a publication of the Protein Society.

[158]  F E Cohen,et al.  Evolutionarily conserved Galphabetagamma binding surfaces support a model of the G protein-receptor complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Jonathan A. Cooper,et al.  Use of the two hybrid system to detect the association of the protein-tyrosine-phosphatase, SHPTP2, with another SH2-containing protein, Grb7. , 1996, Oncogene.

[160]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[161]  Patrick Argos,et al.  Topology prediction of membrane proteins , 1996, Protein science : a publication of the Protein Society.

[162]  P Argos,et al.  Principles of helix-helix packing in proteins: the helical lattice superposition model. , 1996, Journal of molecular biology.

[163]  B. Rost PHD: predicting one-dimensional protein structure by profile-based neural networks. , 1996, Methods in enzymology.

[164]  B. Ozenberger,et al.  Functional interaction of ligands and receptors of the hematopoietic superfamily in yeast. , 1995, Molecular endocrinology.

[165]  B. Rost,et al.  Transmembrane helices predicted at 95% accuracy , 1995, Protein science : a publication of the Protein Society.

[166]  Paul D. Adams,et al.  Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban , 1995, Nature Structural Biology.

[167]  C. Sander,et al.  A method to predict functional residues in proteins , 1995, Nature Structural Biology.

[168]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[169]  A. Varshavsky,et al.  Split ubiquitin as a sensor of protein interactions in vivo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[170]  M. Sansom,et al.  Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. , 1994, Biophysical journal.

[171]  C. Sander,et al.  Correlated mutations and residue contacts in proteins , 1994, Proteins.

[172]  R. Campbell,et al.  Co-evolution of ligand-receptor pairs , 1994, Nature.

[173]  W R Taylor,et al.  A model recognition approach to the prediction of all-helical membrane protein structure and topology. , 1994, Biochemistry.

[174]  K. Shimada,et al.  Primary structure and transcription of genes encoding B870 and photosynthetic reaction center apoproteins from Rubrivivax gelatinosus. , 1994, The Journal of biological chemistry.

[175]  A. Goffeau,et al.  The membrane proteins encoded by yeast chromosome III genes , 1993, FEBS letters.

[176]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[177]  M. Kanehisa,et al.  A knowledge base for predicting protein localization sites in eukaryotic cells , 1992, Genomics.

[178]  D. T. Jones,et al.  A new approach to protein fold recognition , 1992, Nature.

[179]  G. Heijne Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[180]  D. Engelman,et al.  Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. , 1992, The Journal of biological chemistry.

[181]  O. El-Kabbani,et al.  Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. , 1991, Biochemistry.

[182]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[183]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[184]  R. Doolittle,et al.  Nearest neighbor procedure for relating progressively aligned amino acid sequences. , 1990, Methods in enzymology.

[185]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[186]  T O Yeates,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[187]  D. Oesterhelt,et al.  Amino acid sequence of the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis , 1987, The EMBO journal.

[188]  T O Yeates,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[189]  D. Oesterhelt,et al.  The ‘light’ and ‘medium’ subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence , 1986, The EMBO journal.

[190]  T. Steitz,et al.  Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[191]  H. Michel,et al.  The ‘heavy’ subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the gene, nucleotide and amino acid sequence , 1985, The EMBO journal.

[192]  C DeLisi,et al.  The detection and classification of membrane-spanning proteins. , 1985, Biochimica et biophysica acta.

[193]  E. Vanin,et al.  Processed pseudogenes: characteristics and evolution. , 1984, Annual review of genetics.

[194]  F. M. Richards,et al.  Calculation of molecular volumes and areas for structures of known geometry. , 1985, Methods in enzymology.

[195]  D. Eisenberg,et al.  Analysis of membrane and surface protein sequences with the hydrophobic moment plot. , 1984, Journal of molecular biology.

[196]  H. Michel Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. , 1982, Journal of molecular biology.

[197]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[198]  T. Steitz,et al.  Quantitative application of the helical hairpin hypothesis to membrane proteins. , 1982, Biophysical journal.

[199]  T. Steitz,et al.  The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis , 1981, Cell.

[200]  C. Chothia,et al.  Helix to helix packing in proteins. , 1981, Journal of molecular biology.

[201]  R. Cogdell,et al.  Further studies on the composition and spectral properties of the photochemical reaction centers of bacteriochlorophyll b-containing bacteria. , 1980, Biochimica et biophysica acta.

[202]  L. Hood,et al.  The area-code hypothesis: the immune system provides clues to understanding the genetic and molecular basis of cell recognition during development. , 1977, Journal of supramolecular structure.

[203]  F. Richards The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.

[204]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.