Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins

[1]  D. Groulx,et al.  Heat transfer comparison between branching and non-branching fins in a latent heat energy storage system , 2020, International Journal of Thermal Sciences.

[2]  Yanshun Yu,et al.  Solidification performance of heat exchanger with tree-shaped fins , 2020 .

[3]  D. Groulx,et al.  Phase change heat transfer in a rectangular enclosure as a function of inclination and fin placement , 2020 .

[4]  K. Jafarpur,et al.  Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling , 2020 .

[5]  Yongping Chen,et al.  Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins , 2020 .

[6]  M. Chiao,et al.  An algorithm for designing a cooling system for photovoltaic panels , 2019 .

[7]  A. Dhoble,et al.  Thermal analysis of an inclined heat sink with finned PCM container for solar applications , 2019 .

[8]  Agis M. Papadopoulos,et al.  Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management , 2019, Journal of Cleaner Production.

[9]  Mohammad Mehdi Rashidi,et al.  Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure , 2019, International Journal of Heat and Mass Transfer.

[10]  S. Nižetić,et al.  Further progress in the research of fin‐based passive cooling technique for the free‐standing silicon photovoltaic panels , 2019, International Journal of Energy Research.

[11]  F. Duan,et al.  Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection , 2018, International Journal of Heat and Mass Transfer.

[12]  Tao Ma,et al.  Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material , 2018, Applied Energy.

[13]  S. Liao,et al.  Lattice Boltzmann simulation of tree-shaped fins enhanced melting heat transfer , 2018, Numerical Heat Transfer, Part A: Applications.

[14]  A. Papadopoulos,et al.  Phase change material based cooling of photovoltaic panel: A simplified numerical model for the optimization of the phase change material layer and general economic evaluation , 2018, Journal of Cleaner Production.

[15]  A. Campo,et al.  Investigation on the melting process of phase change material in a square cavity with a single fin attached at the center of the heated wall , 2018, The European Physical Journal Applied Physics.

[16]  Agis M. Papadopoulos,et al.  Experimental investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface , 2018 .

[17]  D. Groulx,et al.  Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure , 2018 .

[18]  F. Duan,et al.  Non-uniform heat transfer suppression to enhance PCM melting by angled fins , 2018 .

[19]  Kanzumba Kusakana,et al.  A review of solar photovoltaic systems cooling technologies , 2017 .

[20]  Yiming Liu,et al.  Cooled solar PV panels for output energy efficiency optimisation , 2017 .

[21]  Agis M. Papadopoulos,et al.  Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques , 2017 .

[22]  A. Jemni,et al.  Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review , 2017 .

[23]  Mahmoud Khaled,et al.  Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance , 2017 .

[24]  E. Klugmann-Radziemska,et al.  Photovoltaic module temperature stabilization with the use of phase change materials , 2017 .

[25]  S. S. Chandel,et al.  Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems , 2017 .

[26]  Shaimaa Abdelbaqi,et al.  Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate , 2017 .

[27]  L. Begum,et al.  2-D numerical investigation of melting of an impure PCM in the arbitrary-shaped annuli , 2017 .

[28]  Uroš Stritih,et al.  Increasing the efficiency of PV panel with the use of PCM , 2016 .

[29]  Yasir Rashid,et al.  Impact of integrated photovoltaic-phase change material system on building energy efficiency in hot climate , 2016 .

[30]  M. Farhadi,et al.  Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus , 2016 .

[31]  Hongxing Yang,et al.  Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook , 2015 .

[32]  Giuseppina Ciulla,et al.  Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: Description and experimental validation , 2014 .

[33]  Georgios Kokogiannakis,et al.  Thermal management systems for Photovoltaics (PV) installations: A critical review , 2013 .

[34]  Ching-Jenq Ho,et al.  Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications , 2013 .

[35]  P. Pillay,et al.  Study of optimum tilt angles for solar panels in different latitudes for urban applications , 2012 .

[36]  Amir Faghri,et al.  Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces , 2011 .

[37]  Mahroo Eftekhari,et al.  Natural Convection Heat Transfer in a Partially Open Square Cavity With a Thin Fin Attached to the Hot Wall , 2008 .

[38]  Taieb Lili,et al.  Influence of thermal boundary conditions on natural convection in a square enclosure partially heated from below , 2007 .

[39]  S. A. Nada,et al.  Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate , 2007 .

[40]  Brian Norton,et al.  Phase change materials for limiting temperature rise in building integrated photovoltaics , 2006 .

[41]  Ali J. Chamkha,et al.  EFFECT OF LENGTH AND INCLINATION OF A THIN FIN ON NATURAL CONVECTION IN A SQUARE ENCLOSURE , 2006 .

[42]  E. Bilgen,et al.  Natural convection in cavities with a thin fin on the hot wall , 2005 .

[43]  S. Tasnim,et al.  NUMERICAL ANALYSIS OF HEAT TRANSFER IN A SQUARE CAVITY WITH A BAFFLE ON THE HOT WALL , 2004 .

[44]  Philip C. Eames,et al.  Thermal regulation of building-integrated photovoltaics using phase change materials , 2004 .

[45]  Xundan Shi,et al.  Laminar Natural Convection Heat Transfer in a Differentially Heated Square Cavity Due to a Thin Fin on the Hot Wall , 2003 .

[46]  Adrian Bejan,et al.  Constructal tree‐shaped paths for conduction and convection , 2003 .

[47]  V.M.K. Sastri,et al.  Natural convection in a differentially heated square cavity with a horizontal partition plate on the hot wall , 1993 .

[48]  David Coffield,et al.  Tutorial guide to Unix sockets for network communications , 1987, Comput. Commun..

[49]  A. T. Prata,et al.  Two-Fluid and Single-Fluid Natural Convection Heat Transfer in an Enclosure , 1986 .

[50]  G. de Vahl Davis,et al.  Natural convection in a square cavity: A comparison exercise , 1983 .

[51]  P. S. R. Nayak,et al.  Impact and economic assessment on solar PV mirroring system – A feasibility report , 2020 .

[52]  M. Rahimi,et al.  Experimental analysis of Transient melting process in a horizontal cavity with different configurations of fins , 2020 .

[53]  Sandro Nižetić,et al.  Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics , 2018 .

[54]  A. Elatar,et al.  Numerical study of laminar natural convection inside square enclosure with single horizontal fin , 2016 .

[55]  Chi-ming Lai,et al.  Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer , 2015 .

[56]  Daniele Milone,et al.  A Finite Difference Model of A PV-PCM System , 2012 .