Abstract perturbed Krylov methods
暂无分享,去创建一个
[1] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[2] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[3] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[4] E. Stiefel,et al. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .
[5] Eigenvectors obtained from the adjoint matrix , 1968 .
[6] Olga Taussky. The factorization of the adjugate of a finite matrix , 1968 .
[7] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[8] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[9] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[10] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[11] J. Grcar. Analyses of the lanczos algorithm and of the approximation problem in richardson's method , 1981 .
[12] H. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .
[13] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[14] On the Matrix Adjoint (Adjugate) , 1985 .
[15] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[16] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[17] R. Morgan. Computing Interior Eigenvalues of Large Matrices , 1991 .
[18] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[19] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[20] R. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .
[21] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[22] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[23] Gerard L. G. Sleijpen,et al. Krylov subspace methods for large linear systems of equations , 1993 .
[24] B. Parlett,et al. Semi-duality in the two-sided lanczos algorithm , 1993 .
[25] Zhaojun Bai,et al. Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem , 1994 .
[26] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[27] C. G. Broyden. A new taxonomy of conjugate gradient methods , 1996 .
[28] Anne Greenbaum,et al. Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..
[29] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[30] D. Day,et al. An Efficient Implementation of the Nonsymmetric Lanczos Algorithm , 1997 .
[31] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[32] Ilse C. F. Ipsen,et al. THE IDEA BEHIND KRYLOV METHODS , 1998 .
[33] Qiang Ye,et al. Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear systems , 2000, Math. Comput..
[34] Valeria Simoncini,et al. On the Convergence of Restarted Krylov Subspace Methods , 2000, SIAM J. Matrix Anal. Appl..
[35] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[36] C. Brezinski,et al. A review of formal orthogonality in Lanczos-based methods , 2002 .
[37] J. Liesen,et al. Least Squares Residuals and Minimal Residual Methods , 2001, SIAM J. Sci. Comput..
[38] Valeria Simoncini,et al. Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..
[39] Jens-Peter M. Zemke,et al. Krylov Subspace Methods in Finite Precision : A Unified Approach , 2003 .
[40] Gerard L. G. Sleijpen,et al. Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..
[41] Maria Teresa Vespucci,et al. Krylov Solvers for Linear Algebraic Systems: Krylov Solvers , 2004 .
[42] Valérie Frayssé,et al. Inexact Matrix-Vector Products in Krylov Methods for Solving Linear Systems: A Relaxation Strategy , 2005, SIAM J. Matrix Anal. Appl..
[43] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[44] J. Zemke. (Hessenberg) eigenvalue-eigenmatrix relations , 2006 .
[45] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.