How Lower and Upper Complexity Bounds Meet in Elimination Theory
暂无分享,去创建一个
[1] Patrizia M. Gianni,et al. Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.
[2] Teresa Krick,et al. UNE APPROCHE INFORMATIQUE POUR L'APPROXIMATION DIOPHANTIENNE , 1994 .
[3] David E. Muller,et al. Restructuring of Arithmetic Expressions For Parallel Evaluation , 1976, JACM.
[4] Arnold Schönhage,et al. Fast algorithms - a multitape Turing machine implementation , 1994 .
[5] Joos Heintz,et al. Lower Bounds for Polynomials with Algebraic Coefficients , 1980, Theor. Comput. Sci..
[6] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[7] Francisco Santos Leal. Geometría combinatoria de curvas algebraicas y diagramas de Dalaunay en el plano , 1995 .
[8] Marie-Françoise Roy,et al. Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .
[9] Bernd Sturmfels,et al. Duality and Minors of Secondary Polyhedra , 1993, J. Comb. Theory, Ser. B.
[10] Carlos A. Berenstein,et al. Une formule de Jacobi et ses conséquences , 1991 .
[11] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[12] Joos Heintz. On the Computational Complexity of Polynomials and Bilinear Mappings. A Survey , 1987, AAECC.
[13] Patrice Philippon,et al. Sur des hauteurs alternatives. I , 1991 .
[14] Stephen Smale,et al. Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..
[15] Tetsuro Fujise,et al. Solving Systems of Algebraic Equations by a General Elimination Method , 1988, J. Symb. Comput..
[16] R. Pollack,et al. On the number of cells defined by a set of polynomials , 1993 .
[17] Felipe Cucker,et al. Separation of Complexity Classes in Koiran's Weak Model , 1994, Theor. Comput. Sci..
[18] Laureano Gonzalez-Vega. Determinantal formulae for the solution set of zero-dimensional ideals , 1991 .
[19] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[20] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[21] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[22] Oscar H. Ibarra,et al. Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs , 1983, JACM.
[23] Joos Heintz,et al. Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles , 1991 .
[24] Jean-Benoît Bost,et al. Heights of projective varieties and positive Green forms , 1994 .
[25] Allan Borodin,et al. The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.
[26] Bernd Sturmfels,et al. Some Applications of Affine Gale Diagrams to Polytopes with few Vertices , 1988, SIAM J. Discret. Math..
[27] Arjen K. Lenstra,et al. Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[28] W. Dale Brownawell,et al. Local Diophantine Nullstellen inequalities , 1988 .
[29] Erich Kaltofen,et al. Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.
[30] S. Smale,et al. On a theory of computation and complexity over the real numbers; np-completeness , 1989 .
[31] Marc Noy,et al. Ears of triangulations and Catalan numbers , 1996, Discret. Math..
[32] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[33] B. Sturmfels. Gröbner bases of toric varieties , 1991 .
[34] S. Smale. On the efficiency of algorithms of analysis , 1985 .
[35] Joachim von zur Gathen,et al. Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..
[36] Stephen Smale,et al. On the topology of algorithms, I , 1987, J. Complex..
[37] Walter Baur,et al. The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..
[38] Michael Ben-Or,et al. Lower bounds for algebraic computation trees , 1983, STOC.
[39] Guillermo Matera,et al. Integration of Multivariate Rational Functions Given by Straight-Line Programs , 1995, AAECC.
[40] James Renegar,et al. On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..
[41] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[42] Oscar H. Ibarra,et al. Probabilistic Algorithms and Straight-Line Programs for Some Rank Decision Problems , 1981, Information Processing Letters.
[43] Ernst W. Mayr,et al. Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.
[44] David Masser,et al. Fields of large transcendence degree generated by values of elliptic functions , 1983 .
[45] André Galligo,et al. Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.
[46] Theodor Schneider,et al. Einführung in die transzendenten Zahlen , 1957 .
[47] Peter Gritzmann,et al. Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Basis , 1993, SIAM J. Discret. Math..
[48] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[49] José L. Balcázar,et al. Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.
[50] Ming Li,et al. Kolmogorov Complexity and its Applications , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[51] Volker Strassen,et al. Polynomials with Rational Coefficients Which are Hard to Compute , 1974, SIAM J. Comput..
[52] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..
[53] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[54] S. Smale,et al. Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .
[55] Grete Hermann,et al. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .
[56] David A. Plaisted. Sparse Complex Polynomials and Polynomial Reducibility , 1977, J. Comput. Syst. Sci..
[57] Daniel Lazard,et al. Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..
[58] Richard Zippel,et al. Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..
[59] Allan Borodin,et al. On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..
[60] D. Bayer. The division algorithm and the hilbert scheme , 1982 .
[61] Erich Kaltofen,et al. Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..
[62] H. Riesel. Prime numbers and computer methods for factorization , 1985 .
[63] Felipe Cucker,et al. Time Bounded Computations over the Reals , 1992, Int. J. Algebra Comput..
[64] Carlos A. Berenstein,et al. Effective Bezout identities inQ[z1, ...,zn] , 1991 .
[65] H. T. Kung. New Algorithms and Lower Bounds for the Parallel Evaluation of Certain Rational Expressions and Recurrences , 1976, JACM.
[66] Andrew Chi-Chih Yao. On Parallel Computation for the Knapsack Problem , 1982, JACM.
[67] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[68] M. Mignotte,et al. Mathématiques pour le calcul formel , 1989 .
[69] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[70] D. Grigor'ev,et al. Lower bounds in algebraic computational complexity , 1985 .
[71] Joos Heintz,et al. Sur la complexité du principe de Tarski-Seidenberg , 1989 .
[72] M. Shub,et al. On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .
[73] J. E. Morais,et al. When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.
[74] W. Brownawell. Bounds for the degrees in the Nullstellensatz , 1987 .
[75] Tomás Recio,et al. Algorithms in Real Algebraic Geometry and Applications to Computational Geometry , 1990, Discrete and Computational Geometry.
[76] J. Gathen. Algebraic complexity theory , 1988 .
[77] P. Philippon,et al. Sur des hauteurs alternatives III , 1995 .
[78] Jean-Benoît Bost,et al. UN ANALOGUE ARITHMETIQUE DU THEOREME DE BEZOUT , 1991 .
[79] Joos Heintz,et al. On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..
[80] A. O. Gelʹfond. Transcendental and Algebraic Numbers , 1960 .
[81] Joachim von zur Gathen,et al. Parallel Arithmetic Computations: A Survey , 1986, MFCS.
[82] Teresa Krick,et al. A computational method for diophantine approximation , 1996 .
[83] François Le Lionnais,et al. Les Grands courants de la pensée mathématique , 1986 .