Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: A review

[1]  Michael P. Short,et al.  Current Opinion in Solid State and Materials Science , 2013 .

[2]  Manoj Kumar,et al.  Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology , 2013 .

[3]  M. Mohanraj,et al.  Renewable energy source water pumping systems—A literature review , 2013 .

[4]  Dominique Fleury,et al.  Identification of the main exposure scenarios in the production of CNT-polymer nanocomposites by melt-moulding process , 2013 .

[5]  K. Vafai,et al.  International Journal of Heat and Mass Transfer , 2013 .

[6]  S. Eiamsa-ard,et al.  International Communications in Heat and Mass Transfer , 2013 .

[7]  Takeshi Morita,et al.  IWPMA 2012 9th international workshop on piezoelectric materials and applications in actuators , 2013 .

[8]  S. Kidalov,et al.  High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application , 2012 .

[9]  Ali Asghar Hamidi,et al.  Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids) , 2012 .

[10]  Zhen-hua Liu,et al.  A new frontier of nanofluid research – Application of nanofluids in heat pipes , 2012 .

[11]  S. Kurtz,et al.  Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (Revision) , 2012 .

[12]  R. Velraj,et al.  Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids , 2012 .

[13]  Byung-Il Choi,et al.  General correlation of a natural convective heat sink with plate-fins for high concentrating photovoltaic module cooling , 2012 .

[14]  H. Schneider,et al.  A promising solution using CVD diamond for efficient cooling of power devices , 2012 .

[15]  S. Suresh,et al.  Convective performance of CuO/water nanofluid in an electronic heat sink , 2012 .

[16]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[17]  D. Fray,et al.  High-yield synthesis of multi-walled carbon nanotubes from graphite by molten salt electrolysis , 2012 .

[18]  Suabsakul Gururatana,et al.  Heat Transfer Augmentation for Electronic Cooling , 2012 .

[19]  A. Rashidi,et al.  Effect of CNT structures on thermal conductivity and stability of nanofluid , 2012 .

[20]  A. Al-Warthan,et al.  Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation , 2012 .

[21]  Wei Yu,et al.  A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications of Ethylene Glycol – Water Based Nanofluids Dispersed with Multi Walled Carbon Nanotubes , 2024, INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT.

[22]  S. Paredes,et al.  Ultra‐High‐Concentration Photovoltaic‐Thermal Systems Based on Microfluidic Chip‐Coolers , 2011 .

[23]  Tapas K. Mallick,et al.  Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements , 2011 .

[24]  Paolo Dario,et al.  Analysis on heat resistance of the micro heat pipe with arteries , 2011 .

[25]  H. Metselaar,et al.  A review of nanofluid stability properties and characterization in stationary conditions , 2011 .

[26]  K. S. Coleman,et al.  The superiority of air oxidation over liquid-phase oxidative treatment in the purification of carbon nanotubes , 2011 .

[27]  S. Yellampalli Carbon Nanotubes - Synthesis, Characterization, Applications , 2011 .

[28]  A. Hashim Nanowires - Fundamental Research , 2011 .

[29]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[30]  M. Salleh,et al.  Continuous production of carbon nanotubes – A review , 2011 .

[31]  Li Zhu,et al.  Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations , 2011 .

[32]  D. Aspinwall,et al.  Effect of micro fin geometry on natural convection heat transfer of horizontal microstructures , 2011 .

[33]  Lawrence Shah,et al.  Femtosecond laser machining of multi-depth microchannel networks onto silicon , 2011 .

[34]  P. Asinari,et al.  Enhancing surface heat transfer by carbon nanofins: towards an alternative to nanofluids? , 2011, Nanoscale research letters.

[35]  Yu Feng,et al.  Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review , 2011, Nanoscale research letters.

[36]  R. Bennacer,et al.  Heterogeneous nanofluids: natural convection heat transfer enhancement , 2011, Nanoscale research letters.

[37]  Shigeo M. Tanaka,et al.  Diamond additionsdon't guaranteebetter heat sinks , 2011 .

[38]  Robert F. Boehm,et al.  Water immersion cooling of PV cells in a high concentration system , 2011 .

[39]  Yew Mun Hung,et al.  Effects of geometric design on thermal performance of star-groove micro-heat pipes , 2011 .

[40]  Daniel J. Friedman,et al.  Progress and challenges for next-generation high-efficiency multijunction solar cells , 2010 .

[41]  V. Shanov,et al.  Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. , 2010 .

[42]  Guoshan Wang,et al.  Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids , 2010 .

[43]  Ran Bao,et al.  Thermal performance of inclined grooved heat pipes using nanofluids , 2010 .

[44]  O. Manca,et al.  Natural convection slip flow in a vertical microchannel heated at uniform heat flux , 2010 .

[45]  Xiaohao Wei,et al.  Synthesis and thermal conductivity of microfluidic copper nanofluids , 2010 .

[46]  A. Ionescu,et al.  3D stacked arrays of fins and nanowires on bulk silicon , 2010 .

[47]  Zhen-Hua Liu,et al.  Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon , 2010 .

[48]  Kyu Hyung Do,et al.  Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick , 2010 .

[49]  A. Rashidi,et al.  The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids☆ , 2010 .

[50]  Vincenzo Bianco,et al.  Thermal performance of flat-shaped heat pipes using nanofluids , 2010 .

[51]  Elisa Langa,et al.  Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids , 2010 .

[52]  M. L. Healy,et al.  Economic assessment of single-walled carbon nanotube processes , 2010 .

[53]  Somchai Wongwises,et al.  Enhancement of heat transfer using nanofluids—An overview , 2010 .

[54]  V. Bianco,et al.  An investigation of the thermal performance of cylindrical heat pipes using nanofluids , 2010 .

[55]  Ching-Ping Wong,et al.  Nano-bio-electronic , photonic and MEMS packaging , 2010 .

[56]  Lég és űrtechnika NASA Tech Briefs , 2010 .

[57]  Veikko Lindroos,et al.  Handbook of Silicon Based MEMS Materials and Technologies , 2020 .

[58]  Ivan Marusic,et al.  International Journal of Heat and Fluid Flow , 2010 .

[59]  Dim-Lee Kwong,et al.  Design guidelines of periodic Si nanowire arrays for solar cell application , 2009 .

[60]  Simon Tung,et al.  A review on development of nanofluid preparation and characterization , 2009 .

[61]  A. Harris,et al.  A review of carbon nanotube purification by microwave assisted acid digestion , 2009 .

[62]  N. Pizúrová,et al.  Synthesis of carbon nanotubes and iron oxide nanoparticles in MW plasma torch with Fe(CO)5 in gas feed , 2009 .

[63]  Alexander S. Mukasyan,et al.  Current Opinion in Solid State and , 2009 .

[64]  Xun Hou,et al.  Photoinduced microchannels inside silicon by femtosecond pulses , 2008 .

[65]  R. W. Hoffman,et al.  Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems , 2008 .

[66]  A. Hamidi,et al.  The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid) , 2008, Nanotechnology.

[67]  Reza Abdolvand,et al.  An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon , 2008 .

[68]  W. G. Anderson,et al.  Heat pipe cooling of concentrating photovoltaic cells , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[69]  Zhen-hua Liu,et al.  Heat transfer performance of a horizontal micro-grooved heat pipe using CuO nanofluid , 2008 .

[70]  Sarit K. Das,et al.  Predicting the effective thermal conductivity of carbon nanotube based nanofluids , 2008, Nanotechnology.

[71]  J. S. Kim,et al.  NATURAL CONVECTION HEAT TRANSFER AROUND MICROFIN ARRAYS , 2008 .

[72]  Seok Pil Jang,et al.  Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity , 2007 .

[73]  D. Sathiyamoorthy,et al.  The production of high purity carbon nanotubes with high yield using cobalt formate catalyst on carbon black , 2007 .

[74]  Xue-Fei Yang,et al.  Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon , 2007 .

[75]  G. Mittelman,et al.  Laminar free convection underneath a downward facing inclined hot fin array , 2007 .

[76]  R. Reilly Carbon Nanotubes: Potential Benefits and Risks of Nanotechnology in Nuclear Medicine , 2007, Journal of Nuclear Medicine.

[77]  J.A. Isaacs,et al.  Modeling Production Costs for SWNT Manufacturing Given Uncertain Health and Safety Standards , 2007, Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment.

[78]  G. P. Peterson,et al.  A review and comparative study of the investigations on micro heat pipes , 2007 .

[79]  J. Buršík,et al.  Discussion of important factors in deposition of carbon nanotubes by atmospheric pressure microwave plasma torch , 2007 .

[80]  R. Engel-Herbert,et al.  CVD synthesis and purification of single-walled carbon nanotubes using silica-supported metal catalyst , 2007 .

[81]  Michael Keidar,et al.  Factors affecting synthesis of single wall carbon nanotubes in arc discharge , 2007 .

[82]  Krisztian Kordas,et al.  Chip cooling with integrated carbon nanotube microfin architectures , 2007 .

[83]  Andrew T. Harris,et al.  A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition , 2007 .

[84]  Jason Chuang,et al.  Experimental microchannel heat sink performance studies using nanofluids , 2007 .

[85]  S. Sen,et al.  A detailed model for the flame synthesis of carbon nanotubes and nanofibers , 2007 .

[86]  A. Mohamed,et al.  Production of High Purity Multi-Walled Carbon Nanotubes from Catalytic Decomposition of Methane , 2006 .

[87]  Shung-Wen Kang,et al.  Experimental investigation of silver nano-fluid on heat pipe thermal performance , 2006 .

[88]  Y. Ahn,et al.  Investigation on characteristics of thermal conductivity enhancement of nanofluids , 2006 .

[89]  Tzu-Chen Hung,et al.  An Optimal Parametric Design to Improve Chip Cooling , 2006, 2006 11th International Symposium on Advanced Packaging Materials: Processes, Properties and Interface.

[90]  Wu Weiyang,et al.  A Single-stage Boost-Flyback PFC Converter , 2006, 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference.

[91]  Magdaléna Kadlečíková,et al.  Carbon nanotubes synthesis in microwave plasma torch at atmospheric pressure , 2006 .

[92]  O. Zhou,et al.  Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. , 2006, Journal of nanoscience and nanotechnology.

[93]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[94]  Mehul C. Raval,et al.  solar cells , 2006 .

[95]  Tsukasa Akasaka,et al.  Oxidation of multiwalled carbon nanotubes by nitric acid , 2005 .

[96]  O. Haddad,et al.  Developing Free-Convection Gas Flow in a Vertical Open-Ended Microchannel Filled with Porous Media , 2005 .

[97]  Balram Suman,et al.  An analytical model for fluid flow and heat transfer in a micro-heat pipe of polygonal shape , 2005 .

[98]  Cha'o-Kuang Chen,et al.  Natural Convection in a Vertical Microchannel , 2005 .

[99]  A. Koşar,et al.  Forced convective heat transfer across a pin fin micro heat sink , 2005 .

[100]  A. Koşar,et al.  Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins , 2005 .

[101]  C. Dey,et al.  Cooling of photovoltaic cells under concentrated illumination: a critical review , 2005 .

[102]  Yoshihiro Kobayashi,et al.  Selective growth of individual single-walled carbon nanotubes suspended between pillar structures , 2004 .

[103]  Marc J. Assael,et al.  Thermal Conductivity of Suspensions of Carbon Nanotubes in Water , 2004 .

[104]  Philip A. Gale,et al.  Encyclopedia of Supramolecular Chemistry , 2004 .

[105]  Youn Tae Kim,et al.  Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon , 2004, Microelectron. Reliab..

[106]  J. Atwood,et al.  Encyclopedia of supramolecular chemistry , 2004 .

[107]  Jefferson W. Tester,et al.  Flame synthesis of single-walled carbon nanotubes , 2004 .

[108]  W. Roetzel,et al.  Natural convection of nano-fluids , 2003 .

[109]  Zengyuan Guo,et al.  Size effect on single-phase channel flow and heat transfer at microscale , 2003 .

[110]  Monique Lallemand,et al.  Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics , 2003 .

[111]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[112]  R. B. Lacount,et al.  Selective oxidation of single-walled carbon nanotubes using carbon dioxide , 2003 .

[113]  Chandrakant D. Patel,et al.  Design and performance evaluation of a compact thermosyphon , 2002 .

[114]  G. P. Peterson,et al.  Optimization of Micro Heat Pipe Radiators in a Radiation Environment , 2002 .

[115]  G. P. Peterson,et al.  Analysis of Wire-Bonded Micro Heat Pipe Arrays , 2002 .

[116]  R. Dinwiddie,et al.  Novel heat spreader coatings for high power electronic devices , 2002 .

[117]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[118]  D. Twitchen,et al.  Thermal conductivity measurements on CVD diamond , 2001 .

[119]  R. Gopal,et al.  Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices , 2000 .

[120]  K. J. Gray,et al.  Effective thermal conductivity of a diamond coated heat spreader , 2000 .

[121]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[122]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[123]  W. B. Johnson,et al.  COMPACT THERMOSYPHONS EMPLOYING MICROFABRICATED COMPONENTS , 1999 .

[124]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[125]  Annick Loiseau,et al.  Purification des nanotubes de carbone monofeuillets , 1999 .

[126]  Bernd Gromoll Micro cooling systems for high density packaging , 1998 .

[127]  Yoon-Pyo Lee,et al.  The effects of surface tension and wire diameter on the rise velocity of a bubble in a miniature two-phase closed thermosyphon , 1996 .

[128]  A. B. Duncan,et al.  Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers , 1993 .

[129]  Masayoshi Esashi,et al.  Cryogenic dry etching for high aspect ratio microstructures , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[130]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[131]  S. Buttgenbach,et al.  Fabrication of microchannels by laser machining and anisotropic etching of silicon , 1992 .

[132]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[133]  T. P. Cotter Principles and prospects for micro heat pipes , 1984 .