ELEMENT RESEQUENCING FOR USE WITH A MULTIPLE FRONT ALGORITHM

The multiple front algorithm is an extension of the frontal method to allow parallelism to be exploited in the solution process. The finite-element domain is partitioned into a number of subdomains and a frontal decomposition is performed on each subdomain separately. For a given partitioning of the domain, the efficiency of the multiple front algorithm depends on the ordering of the elements within each subdomain. We look at the limitations of existing element reordering algorithms when applied to a subdomain and consider how these limitations may be overcome. Extensive numerical experiments are performed on a range of practical problems and, on the basis of the results, we propose a new element resequencing algorithm for use with a multiple front algorithm.

[1]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[2]  A. Bykat A note on an element ordering scheme , 1977 .

[3]  Mark S. Shephard,et al.  The versatility of automatic mesh generators based on tree structures and advanced geometric constructs , 1988 .

[4]  Ali Kaveh,et al.  A connectivity coordinate system for node and element ordering , 1991 .

[5]  H. Pina,et al.  An algorithm for frontwidth reduction , 1981 .

[6]  Bruce M. Irons,et al.  A frontal solution program for finite element analysis , 1970 .

[7]  Charbel Farhat,et al.  A simple and efficient automatic fem domain decomposer , 1988 .

[8]  Paulo M. Pimenta,et al.  AN ALGORITHM FOR PROFILE AND WAVEFRONT REDUCTION OF SPARSE MATRICES WITH A SYMMETRIC STRUCTURE , 1993 .

[9]  S. Sloan An algorithm for profile and wavefront reduction of sparse matrices , 1986 .

[10]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[11]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[12]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[13]  M. Randolph,et al.  Automatic element reordering for finite element analysis with frontal solution schemes , 1983 .

[14]  Marcelo Gattass,et al.  Node and element resequencing using the laplacian of a finite element graph: part i---general concep , 1994 .

[15]  I. Duff,et al.  THE USE OF PROFILE REDUCTION ALGORITHMS WITH A FRONTAL CODE , 1989 .

[16]  Norman E. Gibbs,et al.  Algorithm 509: A Hybrid Profile Reduction Algorithm [F1] , 1976, TOMS.

[17]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[18]  J. G. Malone Automated mesh decomposition and concurrent finite element analysis for hypercube multiprocessor computers , 1988 .

[19]  Alan George,et al.  An Implementation of a Pseudoperipheral Node Finder , 1979, TOMS.

[20]  Roy D. Williams,et al.  Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991, Concurr. Pract. Exp..

[21]  I. Duff,et al.  The Use of multiple fronts in Gaussian elimination , 1994 .

[22]  E. Lui,et al.  A parallel frontal solver on the alliant FX/80 , 1991 .

[23]  Jennifer A. Scott,et al.  MA42 - A new frontal code for solving sparse unsymmetric systems , 1993 .

[24]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[25]  Byung Chai Lee,et al.  An efficient profile reduction algorithm based on the frontal ordering scheme and the graph theory , 1992 .

[26]  John G. Lewis,et al.  Proceedings of the Fifth SIAM Conference on Applied Linear Algebra , 1994 .

[27]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[28]  P. Hood,et al.  Frontal solution program for unsymmetric matrices , 1976 .

[29]  Ali Kaveh A note on ‘a two‐step approach to finite element ordering’ , 1984 .

[30]  R F Fowler,et al.  RALPAR: RAL mesh partitioning program: version 1.1 , 1994 .

[31]  Rf Fowler,et al.  Partitioning methods for unstructured finite element meshes , 1994 .

[32]  Jennifer A. Scott,et al.  The design of a new frontal code for solving sparse, unsymmetric systems , 1996, TOMS.

[33]  Iain S. Duff,et al.  Concurrent Multifrontal Methods: Shared Memory, Cache, and Frontwidth Issues , 1987 .

[34]  Steven J. Fenves,et al.  A two‐step approach to finite element ordering , 1983 .

[35]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[36]  Abdur Razzaque,et al.  Automatic reduction of frontwidth for finite element analysis , 1980 .

[37]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[38]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .