Log-cumulants of the finite mixture model and their application to statistical analysis of fully polarimetric UAVSAR data

Since its first flight in 2007, the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR (PolSAR) data in very high spatial resolution. It is possible to observe small spatial features in this type of data, offering the opportunity to explore structures in the images. In general, the structured scenes would present multimodal or spiky histograms. The finite mixture model has great advantages in modeling data with irregular histograms. In this paper, a type of important statistics called log-cumulants, which could be used to design parameter estimator or goodness-of-fit tests, are derived for the finite mixture model. They are compared with log-cumulants of the texture models. The results are adopted to UAVSAR data analysis to determine which model is better for different land types.

[1]  Fulvio Gini,et al.  Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter , 2002, Signal Process..

[2]  Gabriele Moser,et al.  Modeling the Statistics of High Resolution Sar Images Modeling the Statistics of High Resolution Sar Images Modélisation Des Statistiques Des Images Radar (rso) Haute Résolution , 2022 .

[3]  Carlos López-Martínez,et al.  A Physical Analysis of Polarimetric SAR Data Statistical Models , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Thomas L. Ainsworth,et al.  On Characterizing High-Resolution SAR Imagery Using Kernel-Based Mixture Speckle Models , 2015, IEEE Geoscience and Remote Sensing Letters.

[5]  Carlos López-Martínez,et al.  Polarimetric SAR speckle noise model , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  Thomas L. Ainsworth,et al.  Polarimetric SAR Speckle Filtering and the Extended Sigma Filter , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Lionel Bombrun,et al.  Fisher Distribution for Texture Modeling of Polarimetric SAR Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[8]  S. D. M. ller,et al.  Polarisation: Applications in Remote Sensing , 2010 .

[9]  O. Papasouliotis,et al.  Covariance Matrix Estimation , 2006 .

[10]  Dan R. Sheen,et al.  Statistical and spatial properties of forest clutter measured with polarimetric synthetic aperture radar (SAR) , 1992, IEEE Trans. Geosci. Remote. Sens..

[11]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[12]  Corina da Costa Freitas,et al.  A model for extremely heterogeneous clutter , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[14]  S. Quegan,et al.  A statistical description of polarimetric and interferometric synthetic aperture radar data , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  N. Chamberlain,et al.  The UAVSAR instrument: Description and first results , 2008, 2008 IEEE Radar Conference.

[16]  S. Cloude Polarisation: Applications in Remote Sensing , 2009 .

[17]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[18]  Torbjørn Eltoft,et al.  Application of the Matrix-Variate Mellin Transform to Analysis of Polarimetric Radar Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[19]  K. Ranson,et al.  K-distribution for multi-look processed polarimetric SAR imagery , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Stian Normann Anfinsen Statistical Unmixing of SAR Images , 2016 .

[21]  Liu Chang,et al.  Technology and Applications of UAV Synthetic Aperture Radar System , 2016 .

[22]  J. Kong,et al.  K-Distribution and Polarimetric Terrain Radar Clutter , 1990, Progress In Electromagnetics Research.

[23]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[24]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[25]  Gabriele Moser,et al.  On the Method of Logarithmic Cumulants for Parametric Probability Density Function Estimation , 2013, IEEE Transactions on Image Processing.

[26]  Stian Normann Anfinsen,et al.  A Complete Coverage of Log-Cumulant Space in Terms of Distributions for Polarimetric SAR Data , 2011 .

[27]  Gabriele Moser,et al.  Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[29]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[30]  Carlos López-Martínez,et al.  Higher Order Statistics for Texture Analysis and Physical Interpretation of Polarimetric SAR Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[31]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[32]  Carlos López-Martínez,et al.  Filtering and Segmentation of Polarimetric SAR Data Based on Binary Partition Trees , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Motoyuki Sato,et al.  PolInSAR Complex Coherence Estimation Based on Covariance Matrix Similarity Test , 2012, IEEE Transactions on Geoscience and Remote Sensing.