Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo

In this work, the reversible-jump Markov chain Monte Carlo technique is applied for identifying the parameters governing stochastic processes of component degradation. Two case studies are examined concerning the evolution of deteriorating systems whose parameters undergo step changes in time. The method turns out to be capable of identifying the instances of change in behavior, and of estimating the parameter values. A Bayesian updating strategy is proposed to refine the parameter estimates as new data are made available.

[1]  Jean-Yves Tourneret,et al.  Changepoint detection using reversible jump MCMC methods , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[4]  Paul Fearnhead,et al.  Exact and efficient Bayesian inference for multiple changepoint problems , 2006, Stat. Comput..

[5]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[6]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[7]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[8]  Jean-Yves Tourneret,et al.  Least-squares estimation of multiple abrupt changes contaminated by multiplicative noise using MCMC , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[9]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[10]  Enrico Zio,et al.  Bayesian inference of BWR model parameters by Markov chain Monte Carlo , 2008 .

[11]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[12]  Ananda Sen,et al.  Estimation of current reliability in a Duane-based reliability growth model , 1998 .

[13]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[14]  Lynn Kuo,et al.  Bayesian Binary Segmentation Procedure for a Poisson Process With Multiple Changepoints , 2001 .

[15]  Eric R. Ziegel,et al.  Statistical Methods for the Reliability of Repairable Systems , 2001, Technometrics.

[16]  R. Montes-Iturrizaga,et al.  A Bayesian Model for the Probability Distribution of Fatigue Damage in Tubular Joints , 2004 .

[17]  Benjamin Reiser,et al.  Bayesian inference for the power law process , 1992 .

[18]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[19]  H. Bergman,et al.  Detection of onset of neuronal activity by allowing for heterogeneity in the change points , 2002, Journal of Neuroscience Methods.

[20]  Chin-Yu Huang,et al.  Reliability prediction and assessment of fielded software based on multiple change-point models , 2005, 11th Pacific Rim International Symposium on Dependable Computing (PRDC'05).

[21]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[22]  L. H. Crow Confidence Interval Procedures for the Weibull Process With Applications to Reliability Growth , 1982 .

[23]  E. Hofer On two-stage Bayesian modeling of initiating event frequencies and failure rates , 1999 .

[24]  Tunc Aldemir,et al.  Parameter estimation toward fault diagnosis in nonlinear systems using a Markov model of system dynamics , 1997 .

[25]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[26]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[27]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[28]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .

[29]  Siva Sivaganesan,et al.  On Modeling Change Points in Non-Homogeneous Poisson Processes , 2005 .

[30]  Nikolaos Limnios,et al.  Modelling and estimating the reliability of stochastic dynamical systems with Markovian switching , 2008, Reliab. Eng. Syst. Saf..

[31]  M. Kalos,et al.  Monte Carlo methods , 1986 .

[32]  Ronald L. Iman,et al.  On the Solution Approach for Bayesian Modeling of Initiating Event Frequencies and Failure Rates , 1997 .

[33]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[34]  Thomas A. Mazzuchi,et al.  Bayesian computations for a class of reliability growth models , 1998 .

[35]  Robert M. Edwards,et al.  Kalman Filter Application for Distributed Parameter Estimation in Reactor Systems , 1996 .

[36]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[37]  Yan Pang,et al.  Condition monitoring of an advanced gas-cooled nuclear reactor core , 2007 .

[38]  A. Raftery,et al.  Bayesian analysis of a Poisson process with a change-point , 1986 .

[39]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .