‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease

[1]  Michael Ruse,et al.  Mechanisms and Models , 2007 .

[2]  B. Fakler,et al.  Pacemaking by HCN Channels Requires Interaction with Phosphoinositides , 2006, Neuron.

[3]  G. Meredith,et al.  Behavioral models of Parkinson's disease in rodents: A new look at an old problem , 2006, Movement disorders : official journal of the Movement Disorder Society.

[4]  A. Miyawaki,et al.  Identification of Mitochondrial DNA Polymorphisms That Alter Mitochondrial Matrix pH and Intracellular Calcium Dynamics , 2006, PLoS genetics.

[5]  M. Beal,et al.  The role of mitochondria in inherited neurodegenerative diseases , 2006, Journal of neurochemistry.

[6]  E. Wolters,et al.  Enhanced sensitivity of dopaminergic neurons to rotenone-induced toxicity with aging. , 2006, Parkinsonism & related disorders.

[7]  C. Geula,et al.  Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons , 2006, Nature Genetics.

[8]  Zhen Yan,et al.  Activation of Group III Metabotropic Glutamate Receptors Attenuates Rotenone Toxicity on Dopaminergic Neurons through a Microtubule-Dependent Mechanism , 2006, The Journal of Neuroscience.

[9]  Robert W. Taylor,et al.  High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease , 2006, Nature Genetics.

[10]  N. Wood,et al.  Expanding insights of mitochondrial dysfunction in Parkinson's disease , 2006, Nature Reviews Neuroscience.

[11]  M. Coleman Axon degeneration mechanisms: commonality amid diversity , 2005, Nature Reviews Neuroscience.

[12]  R. Palmiter,et al.  Dopamine Depletion Does Not Protect against Acute 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Toxicity In Vivo , 2005, The Journal of Neuroscience.

[13]  Stanley Fahn,et al.  Does levodopa slow or hasten the rate of progression of Parkinson’s disease? , 2005, Journal of Neurology.

[14]  Weixing Shen,et al.  Cholinergic Suppression of KCNQ Channel Currents Enhances Excitability of Striatal Medium Spiny Neurons , 2005, The Journal of Neuroscience.

[15]  Reidun Torp,et al.  Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. , 2005, Human molecular genetics.

[16]  D James Surmeier,et al.  Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? , 2005, Current Opinion in Neurobiology.

[17]  D. James Surmeier,et al.  G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca Channels Is Dependent on a Shank-Binding Domain , 2005 .

[18]  P. Riederer,et al.  Time course of nigrostriatal degeneration in parkinson's disease , 1976, Journal of Neural Transmission.

[19]  Alexei Verkhratsky,et al.  Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. , 2005, Physiological reviews.

[20]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[21]  D James Surmeier,et al.  HCN2 and HCN1 Channels Govern the Regularity of Autonomous Pacemaking and Synaptic Resetting in Globus Pallidus Neurons , 2004, The Journal of Neuroscience.

[22]  M. Hows,et al.  High-performance liquid chromatography/tandem mass spectrometry assay for the determination of 1-methyl-4-phenyl pyridinium (MPP+) in brain tissue homogenates , 2004, Journal of Neuroscience Methods.

[23]  Hansjürgen Bratzke,et al.  Stages in the development of Parkinson’s disease-related pathology , 2004, Cell and Tissue Research.

[24]  J. T. Greenamyre,et al.  Parkinson's--Divergent Causes, Convergent Mechanisms , 2004, Science.

[25]  T. Hastings,et al.  Biomedicine. Parkinson's--divergent causes, convergent mechanisms. , 2004, Science.

[26]  D. Sulzer,et al.  Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics , 2003, Trends in Neurosciences.

[27]  T. Dawson,et al.  Molecular Pathways of Neurodegeneration in Parkinson's Disease , 2003, Science.

[28]  W. Dauer,et al.  Parkinson's Disease Mechanisms and Models , 2003, Neuron.

[29]  Sten Orrenius,et al.  Calcium: Regulation of cell death: the calcium–apoptosis link , 2003, Nature Reviews Molecular Cell Biology.

[30]  Yi Ai,et al.  Intraputamenal infusion of GDNF in aged rhesus monkeys: Distribution and dopaminergic effects , 2003, The Journal of comparative neurology.

[31]  M. Vila,et al.  The 1‐Methyl‐4‐Phenyl‐1,2,3,6‐Tetrahydropyridine Mouse Model , 2003 .

[32]  P. Bywood,et al.  Mitochondrial Complex Inhibitors Preferentially Damage Substantia Nigra Dopamine Neurons in Rat Brain Slices , 2003, Experimental Neurology.

[33]  M. Vila,et al.  The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. , 2003, Annals of the New York Academy of Sciences.

[34]  Matthew F Nolan,et al.  Activity-Dependent Regulation of HCN Pacemaker Channels by Cyclic AMP Signaling through Dynamic Allosteric Coupling , 2002, Neuron.

[35]  M. Duchen,et al.  Mitochondria, Ca2+ and neurodegenerative disease. , 2002, European journal of pharmacology.

[36]  Jochen Roeper,et al.  Ih Channels Contribute to the Different Functional Properties of Identified Dopaminergic Subpopulations in the Midbrain , 2002, The Journal of Neuroscience.

[37]  S. Totterdell,et al.  Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment , 2001, Neuroscience.

[38]  Weifeng Xu,et al.  Neuronal CaV1.3α1 L-Type Channels Activate at Relatively Hyperpolarized Membrane Potentials and Are Incompletely Inhibited by Dihydropyridines , 2001, The Journal of Neuroscience.

[39]  Pedro Parraguez Ruiz,et al.  Treatment advances for cocaine-induced ischemic stroke: focus on dihydropyridine-class calcium channel antagonists. , 2001, The American journal of psychiatry.

[40]  A. Koschak,et al.  α1D (Cav1.3) Subunits Can Form L-type Ca2+ Channels Activating at Negative Voltages* , 2001, The Journal of Biological Chemistry.

[41]  M L Hines,et al.  Neuron: A Tool for Neuroscientists , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[42]  A. Dolphin,et al.  Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line. , 2001, Molecular endocrinology.

[43]  Todd B. Sherer,et al.  Chronic systemic pesticide exposure reproduces features of Parkinson's disease , 2000, Nature Neuroscience.

[44]  J. Engel,et al.  Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels , 2000, Cell.

[45]  C. Wilson,et al.  Coupled oscillator model of the dopaminergic neuron of the substantia nigra. , 2000, Journal of neurophysiology.

[46]  D. Guastella,et al.  Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Nifedipine blocks apamin-induced bursting activity in nigral dopamine-containing neurons , 1999, Brain Research.

[48]  M. Beal,et al.  Excitotoxicity and nitric oxide in parkinson's disease pathogenesis , 1998, Annals of neurology.

[49]  S. Shimohama,et al.  Dopamine D2‐type agonists protect mesencephalic neurons from glutamate neurotoxicity: Mechanisms of neuroprotective treatment against oxidative stress , 1998, Annals of neurology.

[50]  D. Surmeier,et al.  Basal forebrain neurons adjacent to the globus pallidus co-express GABAergic and cholinergic marker mRNAs. , 1998, Neuroreport.

[51]  D. Surmeier,et al.  Somatodendritic Depolarization-Activated Potassium Currents in Rat Neostriatal Cholinergic Interneurons Are Predominantly of the A Type and Attributable to Coexpression of Kv4.2 and Kv4.1 Subunits , 1998, The Journal of Neuroscience.

[52]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[53]  A. Kupsch,et al.  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level , 1996, Brain Research.

[54]  D. Surmeier,et al.  Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons , 1996, The Journal of Neuroscience.

[55]  R. Swerdlow,et al.  Origin and functional consequences of the complex I defect in Parkinson's disease , 1996, Annals of neurology.

[56]  D. German,et al.  Midbrain dopaminergic neurons in the mouse: Computer‐assisted mapping , 1996, The Journal of comparative neurology.

[57]  A. Kupsch,et al.  Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. , 1995, Neuroreport.

[58]  M Migliore,et al.  Computer simulations of morphologically reconstructed CA3 hippocampal neurons. , 1995, Journal of neurophysiology.

[59]  Alessandro Stefani,et al.  Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones , 1994, British journal of pharmacology.

[60]  J. Coyle,et al.  Oxidative stress, glutamate, and neurodegenerative disorders. , 1993, Science.

[61]  I. Engberg,et al.  Nifedipine‐ and omega‐conotoxin‐sensitive Ca2+ conductances in guinea‐pig substantia nigra pars compacta neurones. , 1993, The Journal of physiology.

[62]  F. Messerli,et al.  Cardiovascular effects of isradipine in essential hypertension. , 1991, The American journal of cardiology.

[63]  J J Jack,et al.  Electrophysiology of dopaminergic and non‐dopaminergic neurones of the guinea‐pig substantia nigra pars compacta in vitro. , 1991, The Journal of physiology.

[64]  P. Mcgeer,et al.  Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K , 1990, Brain Research.

[65]  F. Hefti,et al.  Toxicity of 6‐hydroxydopamine and dopamine for dopaminergic neurons in culture , 1990, Journal of neuroscience research.

[66]  A. Grace,et al.  Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  I. Silver,et al.  ATP and Brain Function , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[68]  S. Kish,et al.  Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. , 1988, The New England journal of medicine.

[69]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: single spike firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  D M Laskin,et al.  A new look at an old problem. , 1968, Journal of oral surgery.

[71]  O. Hornykiewicz Dopamine (3-hydroxytyramine) and brain function. , 1966, Pharmacological reviews.