Studies two problems in the theory of identification via channels. The first problem concerns the identification via channels with noisy feedback. Whereas for Shannon's transmission problem the capacity of a discrete memoryless channel does not change with feedback, it is known that the identification capacity is affected by feedback. The authors study its dependence on the feedback channel. They prove both, a direct and a converse coding theorem. Although a gap exists between the upper and lower bounds provided by these two theorems, the known result for channels without feedback and the known result for channels with complete feedback, are both special cases of these two new theorems, because in these cases the bounds coincide. The second problem is the identification via wiretap channels. A secrecy identification capacity is defined for the wiretap channel. A "dichotomy theorem" is proved which says that the second-order secrecy identification capacity is the same as Shannon's capacity for the main channel as long as the secrecy transmission capacity of the wiretap channel is not zero, and zero otherwise. Equivalently, one can say that the identification capacity is not lowered by the presence of a wiretapper as long as 1 bit can be transmitted (or identified) correctly with arbitrarily small error probability. This is in strong contrast to the case of transmission. >
[1]
Rudolf Ahlswede,et al.
Identification via channels
,
1989,
IEEE Trans. Inf. Theory.
[2]
Rudolf Ahlswede,et al.
On identification via multiway channels with feedback
,
1991,
IEEE Trans. Inf. Theory.
[3]
Rudolf Ahlswede,et al.
Erasure, list, and detection zero-error capacities for low noise and a relation to identification
,
1996,
IEEE Trans. Inf. Theory.
[4]
Sergio Verdú,et al.
Approximation theory of output statistics
,
1993,
IEEE Trans. Inf. Theory.
[5]
A. D. Wyner,et al.
The wire-tap channel
,
1975,
The Bell System Technical Journal.
[6]
I. Csiszár.
Information Theory
,
1981
.
[7]
Sergio Verdú,et al.
New results in the theory of identification via channels
,
1992,
IEEE Trans. Inf. Theory.
[8]
Rudolf Ahlswede,et al.
Identification in the presence of feedback-A discovery of new capacity formulas
,
1989,
IEEE Trans. Inf. Theory.
[9]
Rudolf Ahlswede,et al.
A method of coding and its application to arbitrarily varying channels
,
1980
.
[10]
Cyril Leung,et al.
An achievable rate region for the multiple-access channel with feedback
,
1981,
IEEE Trans. Inf. Theory.