MOST EVEN BUDGED YET: SOME CASES FOR GAME-THEORETIC SEMANTICS IN NATURAL LANGUAGE
暂无分享,去创建一个
[1] G. Sher. Ways of branching quantifers , 1990 .
[2] A. Pietarinen. Informational Independence in Epistemic Logic , 1999 .
[3] Karin Pittner. Adverb Placement , 1999 .
[4] Gila Sher. Partially-Ordered (Branching) Generalized Quantifiers: A General Definition , 1997, J. Philos. Log..
[5] Dag Westerstaåhl,et al. Quantifiers in Formal and Natural Languages , 1989 .
[6] A. Pietarinen. What is a negative polarity item , 2001 .
[7] Ariel Rubinstein,et al. A Course in Game Theory , 1995 .
[8] Ljiljana Progovac,et al. Negative and Positive Polarity: A Binding Approach , 1994 .
[9] Ahti-Veikko Pietarinen,et al. Partiality and Games: Propositional Logic , 2001, Log. J. IGPL.
[10] Gabriel Sandu,et al. On the Theory of Anaphora: Dynamic Predicate Logic vs. Game-Theoretical Semantics , 1997 .
[11] M. Israel. Polarity sensitivity as lexical semantics , 1996 .
[12] Dag Westerståhl. Branching Generalized Quantifiers and Natural Language , 1987 .
[13] F. Zwarts. Three Types of Polarity , 1997 .
[14] J. Hintikka,et al. Anaphora And Definite Descriptions , 1985 .
[15] Jaakko Hintikka,et al. Game-theoretical semantics : essays on semantics , 1979 .