The role of the posterior parietal cortex in saccadic error processing

Ocular saccades rapidly displace the fovea from one point of interest to another, thus minimizing the loss of visual information and ensuring the seamless continuity of visual perception. However, because of intrinsic variability in sensory-motor processing, saccades often miss their intended target, necessitating a secondary corrective saccade. Behavioral evidence suggests that the oculomotor system estimates saccadic error by relying on two sources of information: the retinal feedback obtained post-saccadically and an internal extra-retinal signal obtained from efference copy or proprioception. However, the neurophysiological mechanisms underlying this process remain elusive. We trained two rhesus monkeys to perform visually guided saccades towards a target that was imperceptibly displaced at saccade onset on some trials. We recorded activity from neurons in the lateral intraparietal area (LIP), an area implicated in visual, attentional and saccadic processing. We found that a subpopulation of neurons detect saccadic motor error by firing more strongly after an inaccurate saccade. This signal did not depend on retinal feedback or on the execution of a secondary corrective saccade. Moreover, inactivating LIP led to a large and selective increase in the latency of small (i.e., natural) corrective saccade initiation. Our results indicate a key role for LIP in saccadic error processing.

[1]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[2]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[3]  Thérèse Collins,et al.  The relative importance of retinal error and prediction in saccadic adaptation. , 2012, Journal of neurophysiology.

[4]  Mark Shelhamer,et al.  Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes. , 2011, Journal of neurophysiology.

[5]  Robijanto Soetedjo,et al.  Complex Spike Activity of Purkinje Cells in the Oculomotor Vermis during Behavioral Adaptation of Monkey Saccades , 2006, The Journal of Neuroscience.

[6]  W. Becker The control of eye movements in the saccadic system. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[7]  Yq Liu,et al.  Intention and Attention: Different functional roles for LIPd and LIPv , 2010, Nature Neuroscience.

[8]  R. J. van Beers,et al.  The role of execution noise in movement variability. , 2004, Journal of neurophysiology.

[9]  R. J. Beers Correction: Saccadic Eye Movements Minimize the Consequences of Motor Noise , 2008 .

[10]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[11]  Jean-René Duhamel,et al.  Optimal Sensorimotor Control in Eye Movement Sequences , 2009, The Journal of Neuroscience.

[12]  Pierre Morel,et al.  Optimal and Suboptimal Use of Postsaccadic Vision in Sequences of Saccades , 2011, The Journal of Neuroscience.

[13]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[14]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[15]  Henry Kennedy,et al.  Pathways of Attention: Synaptic Relationships of Frontal Eye Field to V4, Lateral Intraparietal Cortex, and Area 46 in Macaque Monkey , 2011, The Journal of Neuroscience.

[16]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[17]  R. Wurtz,et al.  Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. , 1997, Journal of neurophysiology.

[18]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[19]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[20]  Erik D. Reichle,et al.  Eye movements in reading and information processing : , 2015 .

[21]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[22]  Jacob L Yates,et al.  The Role of the Lateral Intraparietal Area in (the Study of) Decision Making. , 2017, Annual review of neuroscience.

[23]  W. Becker Do correction saccades depend exclusively on retinal feedback? A note on the possible role of non-retinal feedback , 1976, Vision Research.

[24]  Reinhold Kliegl,et al.  The generation of secondary saccades without postsaccadic visual feedback. , 2013, Journal of vision.

[25]  R. Andersen,et al.  Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task , 2001, Experimental Brain Research.

[26]  Stephen G Lisberger,et al.  Role of the Lateral Intraparietal Area in Modulation of the Strength of Sensory-Motor Transmission for Visually Guided Movements , 2012, The Journal of Neuroscience.

[27]  Haidong D. Lu,et al.  Neuronal representation of saccadic error in macaque posterior parietal cortex (PPC) , 2016, eLife.

[28]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[29]  M. Jeasnerod CORRECTIVE SACCADES : DEPENDENCE ON RETINAL REAFFERENT SIGNALS , 2008 .

[30]  Jacqueline Gottlieb,et al.  Parietal neurons encode information sampling based on decision uncertainty , 2019, Nature Neuroscience.

[31]  A. Fuchs,et al.  Complex spike activity signals the direction and size of dysmetric saccade errors. , 2008, Progress in brain research.

[32]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[33]  P. Thier,et al.  The Role of the Oculomotor Vermis in the Control of Saccadic Eye Movements , 2002, Annals of the New York Academy of Sciences.

[34]  K. Rayner Eye movements in reading and information processing. , 1978, Psychological bulletin.

[35]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[36]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[37]  R. Andersen,et al.  Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades. , 1999, Journal of neurophysiology.

[38]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[39]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[40]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[41]  Wilsaan M. Joiner,et al.  Corollary discharge contributes to perceived eye location in monkeys. , 2013, Journal of neurophysiology.

[42]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[43]  Mark Shelhamer,et al.  Using prediction errors to drive saccade adaptation: the implicit double-step task , 2012, Experimental Brain Research.

[44]  D. Zee,et al.  Revisiting corrective saccades: Role of visual feedback , 2013, Vision Research.

[45]  K. Hoffmann,et al.  Neural Mechanisms of Saccadic Suppression , 2002, Science.

[46]  D. Pélisson,et al.  Effects of structural and functional cerebellar lesions on sensorimotor adaptation of saccades , 2013, Experimental Brain Research.

[47]  M. Shadlen,et al.  Representation of Confidence Associated with a Decision by Neurons in the Parietal Cortex , 2009, Science.

[48]  J. Krakauer,et al.  Error correction, sensory prediction, and adaptation in motor control. , 2010, Annual review of neuroscience.

[49]  R. J. van Beers,et al.  The Sources of Variability in Saccadic Eye Movements , 2007, The Journal of Neuroscience.

[50]  Etienne Olivier,et al.  A Deficit in Covert Attention after Parietal Cortex Inactivation in the Monkey , 2004, Neuron.

[51]  J. Duhamel,et al.  Saccadic Target Selection Deficits after Lateral Intraparietal Area Inactivation in Monkeys , 2002, The Journal of Neuroscience.

[52]  Yoshiko Kojima,et al.  Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? , 2008, Journal of neurophysiology.

[53]  R. Andersen,et al.  Evidence for the lateral intraparietal area as the parietal eye field , 1992, Current Opinion in Neurobiology.

[54]  Dottie M. Clower,et al.  The Inferior Parietal Lobule Is the Target of Output from the Superior Colliculus, Hippocampus, and Cerebellum , 2001, The Journal of Neuroscience.

[55]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[56]  R. V. van Beers Saccadic Eye Movements Minimize the Consequences of Motor Noise , 2008, PloS one.

[57]  Mark Shelhamer,et al.  Exploring the Fundamental Dynamics of Error-Based Motor Learning Using a Stationary Predictive-Saccade Task , 2011, PloS one.

[58]  S. Ben Hamed,et al.  Ocular fixation and visual activity in the monkey lateral intraparietal area , 2002, Experimental Brain Research.

[59]  Timothy J. Ebner,et al.  The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning , 2015, The Cerebellum.

[60]  L. M. Optican,et al.  Superior colliculus neurons provide the saccadic motor error signal , 2004, Experimental Brain Research.

[61]  A. Fuchs,et al.  The role of the cerebellum in voluntary eye movements. , 2001, Annual review of neuroscience.

[62]  D. Sparks,et al.  Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. , 2004, Journal of neurophysiology.

[63]  R B Daroff,et al.  Corrective movements following refixation saccades: type and control system analysis. , 1972, Vision research.

[64]  D. Pélisson,et al.  Saccade control and eye–hand coordination in optic ataxia , 2008, Neuropsychologia.

[65]  Wilsaan M. Joiner,et al.  Amplitudes and directions of individual saccades can be adjusted by corollary discharge. , 2010, Journal of vision.

[66]  W. Wolf,et al.  Corrective saccades: Effect of shifting the saccade goal , 1982, Vision Research.

[67]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[68]  Daniel Guitton,et al.  Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts , 2003, Nature Neuroscience.

[69]  S. Gauthier,et al.  Executive function deficits in persons with mild cognitive impairment: A study with a Tower of London task , 2012, Journal of clinical and experimental neuropsychology.