Global coverage imaging spectroscopy

The Earth is arguably the most complex object in the solar system, both in terms of the diversity of materials and compounds as well as the diversity of processes occurring in the Earth system. Comprehensive global measurements are required to investigate, understand and model this complex system that includes processes within and between the biosphere, lithosphere, hydrosphere, cryosphere, and atmosphere. Key constituents and processes of the Earth system can be measured and monitored with imaging spectroscopy in the Visible to Shortwave Infrared (VSWIR) region of the electromagnetic spectrum from 380 to 2510 nm with ≤10 nm and spatial sampling of 30 m. This paper presents key science contributions and an approach for a near term global Earth imaging spectroscopy measurement.

[1]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[2]  R. Green,et al.  The Mapping Imaging Spectrometer for Europa (MISE) Investigation , 2015 .

[3]  B. Van Gorp,et al.  Compact Wide swath Imaging Spectrometer (CWIS): alignment and laboratory calibration , 2016, Optical Engineering + Applications.

[4]  W. Smythe,et al.  Near-Infrared Mapping Spectrometer experiment on Galileo , 1992 .

[5]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[6]  Lawrence Ong,et al.  The Earth Observing One (EO-1) Satellite Mission: Over a Decade in Space , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[8]  Nazeeh Aranki,et al.  Fast and adaptive lossless on-board hyperspectral data compression system for space applications , 2009, 2009 IEEE Aerospace conference.

[9]  Matthew Klimesh,et al.  Low-complexity adaptive lossless compression of hyperspectral imagery , 2006, SPIE Optics + Photonics.

[10]  A. Goetz,et al.  Airborne imaging spectrometer: A new tool for remote sensing , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Nazeeh Aranki,et al.  Hardware Implementation of Lossless Adaptive and Scalable Hyperspectral Data Compression for Space , 2009, 2009 NASA/ESA Conference on Adaptive Hardware and Systems.

[12]  Nazeeh Aranki,et al.  Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System , 2012 .

[13]  D. Thompson,et al.  Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI preparatory campaign , 2015 .

[14]  R. H. Brown,et al.  The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation , 2004 .

[15]  B. Van Gorp,et al.  Design of the Compact Wide Swath Imaging Spectrometer (CWIS) , 2014, Optics & Photonics - Optical Engineering + Applications.

[16]  Nazeeh Aranki,et al.  Airborne demonstration of FPGA implementation of Fast Lossless hyperspectral data compression system , 2014, 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[17]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[19]  David R Thompson,et al.  Atmospheric correction with the Bayesian empirical line. , 2016, Optics express.

[20]  R. Green,et al.  Imaging spectrometer science measurements for Terrestrial Ecology: AVIRIS and new developments , 2011, 2011 Aerospace Conference.

[21]  Joseph W. Boardman,et al.  The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation , 2011 .

[22]  R. Green,et al.  An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities , 2015 .

[23]  James W. Baer,et al.  An Overview of the Instrument Suite for the Deep Impact Mission , 2005 .