Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems.

[1]  Robert Walgate,et al.  Synchrotron radiation , 1984, Nature.

[2]  S. Reiche,et al.  GENESIS 1.3: a fully 3D time-dependent FEL simulation code , 1999 .

[3]  Klaus Sokolowski-Tinten,et al.  Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations , 2013, Nature Physics.

[4]  R. Lindberg,et al.  Performance of the x-ray free-electron laser oscillator with crystal cavity , 2011 .

[5]  R. Lindberg,et al.  Spatiotemporal response of crystals in x-ray Bragg diffraction , 2012, 1207.3376.

[6]  T. Matsushita,et al.  A systematic method of estimating the performance of X‐ray optical systems for synchrotron radiation. II. Treatment in position‐angle–wavelength space , 1980 .

[7]  Zhirong Huang,et al.  Tapered undulators for SASE FELs , 2002 .

[8]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[9]  Shvyd'ko Yuri,et al.  X-ray optics : high-energy-resolution applications , 2004 .

[10]  Eberhard Burkel,et al.  Inelastic Scattering of X-Rays with Very High Energy Resolution , 1991 .

[11]  Y. Shvyd’ko,et al.  Maximizing spectral flux from self-seeding hard x-ray free electron lasers , 2013, 1309.7234.

[12]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[13]  S. Reiche,et al.  Toward TW-Level, Hard X-Ray Pulses at LCLS , 2011 .

[14]  N. Kroll,et al.  Free-electron lasers with variable parameter wigglers , 1980, IEEE Journal of Quantum Electronics.

[15]  G. Ruocco,et al.  Dynamics of Glasses and Glass-Forming Liquids Studied by Inelastic X-ray Scattering , 1998 .

[16]  X J Wang,et al.  Efficiency and spectrum enhancement in a tapered free-electron laser amplifier. , 2009, Physical review letters.

[17]  J. Sutter,et al.  Partially coherent wavefront propagation simulations for inelastic x-ray scattering beamline including crystal optics , 2014 .

[18]  Irina Snigireva,et al.  Imaging by parabolic refractive lenses in the hard X-ray range , 1999 .

[19]  B. Dorner,et al.  Observation of Inelastic X-Ray Scattering from Phonons , 1987 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Y. Shvyd’ko Theory of angular-dispersive, imaging hard-x-ray spectrographs , 2015, 1501.05052.

[22]  T. Ishikawa,et al.  Early commissioning of the SPring-8 beamline for high resolution inelastic X-ray scattering , 2001 .

[24]  R. Lindberg,et al.  Demonstration of self-seeding in a hard-X-ray free-electron laser , 2012, Nature Photonics.

[25]  G. Monaco The High-Frequency Atomic Dynamics of Disordered Systems Studied by High-Resolution Inelastic X-Ray Scattering , 2015 .

[26]  Hopkins,et al.  High-efficiency extraction of microwave radiation from a tapered-wiggler free-electron laser. , 1986, Physical review letters.

[27]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.

[28]  Anders Madsen,et al.  Technical Design Report: Scientific Instrument MID , 2013 .

[29]  T. Ishikawa,et al.  A compact X-ray free-electron laser emitting in the sub-ångström region , 2012, Nature Photonics.

[30]  B. Lengeler,et al.  A compound refractive lens for focusing high-energy X-rays , 1996, Nature.

[31]  S. Collins,et al.  Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency. , 2013, Optics express.

[32]  Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays , 2011, 1108.2487.

[33]  Gernot Kostorz,et al.  Journal of Applied Crystallography turns forty , 2007 .

[34]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[35]  Sven Reiche,et al.  A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. , 2008, Physical review letters.

[36]  F. Sette,et al.  Inelastic X-Ray Scattering from Phonons , 2006 .

[37]  Gianluca Geloni,et al.  A novel self-seeding scheme for hard X-ray FELs , 2011 .

[38]  A. Alatas,et al.  An inelastic X-ray spectrometer with 2.2 meV energy resolution , 2001 .

[39]  H. Sinn,et al.  New developments in fabrication of high-energy-resolution analyzers for inelastic X-ray spectroscopy , 2011, Journal of synchrotron radiation.

[40]  Deming Shu,et al.  High-contrast sub-millivolt inelastic X-ray scattering for nano- and mesoscale science , 2014, Nature Communications.

[41]  Thomas Weiland,et al.  XFEL: The European X-Ray Free-Electron Laser - Technical Design Report , 2006 .

[42]  E. Burkel Phonon spectroscopy by inelastic x-ray scattering , 2000 .

[43]  A. Alatas,et al.  X-ray Bragg diffraction in asymmetric backscattering geometry. , 2006, Physical review letters.

[44]  Andrew G. Glen,et al.  APPL , 2001 .

[45]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[46]  S. Reiche,et al.  Modeling and Multidimensional Optimization of a Tapered Free Electron Laser , 2012 .

[47]  W. Manheimer,et al.  Nonlinear Formulation and Efficiency Enhancement of Free-Electron Lasers , 1979 .