Rotation Equivariant Convolutional Neural Networks for Hyperspectral Image Classification

Detection of surface material based on hyperspectral imaging (HSI) analysis is an important and challenging task in remote sensing. It is widely known that spectral-spatial data exploitation performs better than traditional spectral pixel-wise procedures. Nowadays, convolutional neural networks (CNNs) have shown to be a powerful deep learning (DL) technique due their strong feature extraction ability. CNNs not only combine spectral-spatial information in a natural way, but have also shown to be able to learn translation-equivariant representations, i.e. a translation of input features into an equivalent internal CNN feature map. This provides great robustness to spatial feature locations. However, as far as we know, CNNs do not exhibit a natural way to exploit rotation equivariance, i.e. make use of the fact that data patches in a HSI data cube are observed in different orientations due to their orientation or on the varying paths/orbits of the airborne/spaceborne spectrometers. This article presents a rotation-equivariant CNN2D model for HSI analysis, where traditional convolution kernels have been replaced by circular harmonic filters (CHFs). The obtained results over three well-known HSI datasets showcase the potential of the approach.

[1]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[2]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[3]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[4]  Hassan Ghassemian,et al.  A probabilistic SVM approach for hyperspectral image classification using spectral and texture features , 2017 .

[5]  Jocelyn Chanussot,et al.  Multiple Kernel Learning for Hyperspectral Image Classification: A Review , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[6]  B. Kunkel,et al.  ROSIS (Reflective Optics System Imaging Spectrometer) - A Candidate Instrument For Polar Platform Missions , 1988, Other Conferences.

[7]  Charles K. Chui,et al.  Deep Neural Networks for Rotation-Invariance Approximation and Learning , 2019, Analysis and Applications.

[8]  Antonio J. Plaza,et al.  Parallel Hyperspectral Image and Signal Processing [Applications Corner] , 2011, IEEE Signal Processing Magazine.

[9]  Anupam K. Gupta,et al.  Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks , 2019, ArXiv.

[10]  Javier Plaza,et al.  Neighboring Region Dropout for Hyperspectral Image Classification , 2020, IEEE Geoscience and Remote Sensing Letters.

[11]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[12]  Ping Tang,et al.  Spectral and spatial classification of hyperspectral data using SVMs and Gabor textures , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Antonio J. Plaza,et al.  Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic Regression , 2013, IEEE Geoscience and Remote Sensing Letters.

[14]  Jürgen Schmidhuber,et al.  Highway Networks , 2015, ArXiv.

[15]  Gustavo Camps-Valls,et al.  Spatio-Spectral Remote Sensing Image Classification With Graph Kernels , 2010, IEEE Geoscience and Remote Sensing Letters.

[16]  R. Colwell Remote sensing of natural resources. , 1968 .

[17]  Jun Li,et al.  Discriminative Low-Rank Gabor Filtering for Spectral–Spatial Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Mustafa Teke,et al.  A short survey of hyperspectral remote sensing applications in agriculture , 2013, 2013 6th International Conference on Recent Advances in Space Technologies (RAST).

[20]  Naoto Yokoya,et al.  Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Vittorio E. Brando,et al.  Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  Vijayan K. Asari,et al.  Classification of hyperspectral image using multiscale spatial texture features , 2016, 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[23]  Raymond F. Kokaly,et al.  Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing , 2007 .

[24]  Sampsa Koponen,et al.  Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data , 2002 .

[25]  Jun Li,et al.  Hyperspectral Image Classification Using Random Occlusion Data Augmentation , 2019, IEEE Geoscience and Remote Sensing Letters.

[26]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Philip J. Howarth,et al.  Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems , 1999 .

[28]  Liguo Wang,et al.  Adaptive Hyperspectral Image Classification Based on the Fusion of Manifolds Filter and Spatial Correlation Features , 2020, IEEE Access.

[29]  David Aragonés,et al.  Hyperspectral Sensors as a Management Tool to Prevent the Invasion of the Exotic Cordgrass Spartina densiflora in the Doñana Wetlands , 2016, Remote. Sens..

[30]  Pablo J. Zarco-Tejada,et al.  Hyperspectral Remote Sensing of Forest Condition: Estimating Chlorophyll Content in Tolerant Hardwoods , 2003, Forest Science.

[31]  Vidya Manian,et al.  Change detection assessment in a tropical forest using multispectral and hyperspectral images , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[32]  Felix Hueber,et al.  Hyperspectral Imaging Techniques For Spectral Detection And Classification , 2016 .

[33]  Zhou Guo,et al.  On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery , 2015 .

[34]  Antonio Plaza,et al.  A new deep convolutional neural network for fast hyperspectral image classification , 2017, ISPRS Journal of Photogrammetry and Remote Sensing.

[35]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[36]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[37]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[38]  Antonio J. Plaza,et al.  Characterization of Soil Erosion Indicators Using Hyperspectral Data From a Mediterranean Rainfed Cultivated Region , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[39]  S. Bhaskaran,et al.  Hail storm vulnerability assessment by using hyperspectral remote sensing and GIS techniques , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[40]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[41]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[42]  Koray Kavukcuoglu,et al.  Exploiting Cyclic Symmetry in Convolutional Neural Networks , 2016, ICML.

[43]  M. Bauer,et al.  Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. , 2013 .

[44]  Samy Bengio,et al.  Links between perceptrons, MLPs and SVMs , 2004, ICML.

[45]  Liang Xiao,et al.  Supervised Spectral–Spatial Hyperspectral Image Classification With Weighted Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[47]  Antonio J. Plaza,et al.  Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Carlos Roberto de Souza Filho,et al.  Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring , 2017 .

[49]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[50]  Minh N. Do,et al.  Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models , 2002, IEEE Trans. Multim..

[51]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[52]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Hamid Saeed Khan,et al.  Modern Trends in Hyperspectral Image Analysis: A Review , 2018, IEEE Access.

[54]  Michele Volpi,et al.  Learning rotation invariant convolutional filters for texture classification , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[55]  Lorenzo Bruzzone,et al.  Extended profiles with morphological attribute filters for the analysis of hyperspectral data , 2010 .

[56]  Mercedes Eugenia Paoletti,et al.  Deep learning classifiers for hyperspectral imaging: A review , 2019 .

[57]  P. Fisher The pixel: A snare and a delusion , 1997 .

[58]  Sarah L. MacDonald,et al.  Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards , 2016, Comput. Electron. Agric..

[59]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[60]  Max Welling,et al.  Steerable CNNs , 2016, ICLR.

[61]  Philippa J. Mason,et al.  Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China , 2011 .

[62]  Maurice Weiler,et al.  Learning Steerable Filters for Rotation Equivariant CNNs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[63]  Y. T. Zhou,et al.  Computation of optical flow using a neural network , 1988, IEEE 1988 International Conference on Neural Networks.

[64]  Aleksander Madry,et al.  How Does Batch Normalization Help Optimization? (No, It Is Not About Internal Covariate Shift) , 2018, NeurIPS.

[65]  Claude Cariou,et al.  A new k-nearest neighbor density-based clustering method and its application to hyperspectral images , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[66]  Wei Li,et al.  Data Augmentation for Hyperspectral Image Classification With Deep CNN , 2019, IEEE Geoscience and Remote Sensing Letters.

[67]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[69]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[70]  Jon Atli Benediktsson,et al.  The Evolution of the Morphological Profile: from Panchromatic to Hyperspectral Images , 2011 .

[71]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[72]  Antonio J. Plaza,et al.  Cloud implementation of the K-means algorithm for hyperspectral image analysis , 2016, The Journal of Supercomputing.

[73]  Antonio J. Plaza,et al.  A New GPU Implementation of Support Vector Machines for Fast Hyperspectral Image Classification , 2020, Remote. Sens..

[74]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[75]  Antonio Plaza,et al.  Cloud implementation of logistic regression for hyperspectral image classification , 2018 .

[76]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[77]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[78]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[79]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[80]  Lei Tian,et al.  SOIL FERTILITY CHARACTERIZATION IN AGRICULTURAL FIELDS USING HYPERSPECTRAL REMOTE SENSING , 2005 .

[81]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[82]  Ke Huang,et al.  Rotation Invariant Texture Classification with Ridgelet Transform and Fourier Transform , 2006, 2006 International Conference on Image Processing.

[83]  Jon Atli Benediktsson,et al.  Multiple Morphological Profiles From Multicomponent-Base Images for Hyperspectral Image Classification , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[84]  H. Cetin,et al.  Precision agriculture using hyperspectral remote sensing and GIS , 2005, Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005..

[85]  Zhengrong Zou,et al.  Hyperspectral Imagery Classification Based on Rotation-Invariant Spectral–Spatial Feature , 2014, IEEE Geoscience and Remote Sensing Letters.

[86]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[87]  Zhen Ye,et al.  Hyperspectral Image Classification Based on Segmented Local Binary Patterns , 2020 .

[88]  Yazhou Liu,et al.  Rotation-based object-oriented ensemble in land use land cover classification of hyperspectral data , 2016, 2016 Sixth International Conference on Innovative Computing Technology (INTECH).

[89]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[90]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[91]  Hermann Kaufmann,et al.  Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data , 2007 .

[92]  Walid Ouerghemmi,et al.  Hyperspectral Imagery for Environmental Urban Planning , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[93]  T. Esch,et al.  Urban structure type characterization using hyperspectral remote sensing and height information , 2012 .

[94]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[95]  Jon Atli Benediktsson,et al.  Multiple Spectral–Spatial Classification Approach for Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[97]  Jon Atli Benediktsson,et al.  Spectral and Spatial Classification of Hyperspectral Images Based on ICA and Reduced Morphological Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[98]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[99]  Edoardo Pasolli,et al.  An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[100]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[101]  Stephan J. Garbin,et al.  Harmonic Networks: Deep Translation and Rotation Equivariance , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[103]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[104]  Qian Du,et al.  Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[105]  Lifei Wei,et al.  Tailings Reservoir Disaster and Environmental Monitoring Using the UAV-ground Hyperspectral Joint Observation and Processing: A Case of Study in Xinjiang, the Belt and Road , 2019, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.

[106]  Lianru Gao,et al.  Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[107]  Antonio J. Plaza,et al.  Multi-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines , 2009, Sensors.

[108]  Weixin Xie,et al.  A spatial-spectral SIFT for hyperspectral image matching and classification , 2019, Pattern Recognit. Lett..

[109]  Beat Fasel,et al.  Rotation-Invariant Neoperceptron , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[110]  Pao-Ta Yu,et al.  A Nonparametric Feature Extraction and Its Application to Nearest Neighbor Classification for Hyperspectral Image Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[111]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[112]  Antonio J. Plaza,et al.  Fast dimensionality reduction and classification of hyperspectral images with extreme learning machines , 2018, Journal of Real-Time Image Processing.

[113]  Ferdinand Bonn,et al.  Evaluation of soil erosion protective cover by crop residues using vegetation indices and spectral mixture analysis of multispectral and hyperspectral data , 2005 .

[114]  Javier Plaza,et al.  Neural Ordinary Differential Equations for Hyperspectral Image Classification , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[115]  Yunchuan Sun,et al.  Spectral–Spatial HyperspectralImage Classification With K-Nearest Neighbor and Guided Filter , 2018, IEEE Access.

[116]  Qian Du,et al.  Classification of Hyperspectral Imagery Using a New Fully Convolutional Neural Network , 2018, IEEE Geoscience and Remote Sensing Letters.

[117]  Liguo Wang,et al.  Hyperspectral Image Classification Based on Fusion of Curvature Filter and Domain Transform Recursive Filter , 2019, Remote. Sens..

[118]  Kim-Kwang Raymond Choo,et al.  Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification , 2016, Soft Computing.

[119]  Pedro M. Domingos,et al.  Deep Symmetry Networks , 2014, NIPS.

[120]  S. Ustin,et al.  Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing , 2003 .

[121]  Jon Atli Benediktsson,et al.  Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[122]  Hao Zhang,et al.  Application of Hyper Spectral Remote Sensing for Urban Forestry Monitoring in Natural Disaster Zones , 2011, 2011 International Conference on Computer and Management (CAMAN).

[123]  Mercedes Eugenia Paoletti,et al.  Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales , 2019, Revista Iberoamericana de Automática e Informática industrial.

[124]  Saurabh Prasad,et al.  Morphologically Decoupled Structured Sparsity for Rotation-Invariant Hyperspectral Image Analysis , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[125]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[126]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  Jan G. P. W. Clevers,et al.  Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[128]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..