DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro

[1]  S. Goff Genetic control of retrovirus susceptibility in mammalian cells. , 2004, Annual review of genetics.

[2]  E. L. Luning Prak,et al.  More active human L1 retrotransposons produce longer insertions. , 2004, Nucleic acids research.

[3]  J. V. Moran,et al.  Allelic heterogeneity in LINE-1 retrotransposition activity. , 2003, American journal of human genetics.

[4]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[5]  O. Piskareva,et al.  Functional reverse transcriptase encoded by the human LINE-1 from baculovirus-infected insect cells. , 2003, Protein expression and purification.

[6]  M. Batzer,et al.  LINE-1 preTa elements in the human genome. , 2003, Journal of molecular biology.

[7]  Jef D Boeke,et al.  Human L1 element target‐primed reverse transcription in vitro , 2002, The EMBO journal.

[8]  A. Pavlícek,et al.  Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. , 2002, Gene.

[9]  A. Bibiłło,et al.  High Processivity of the Reverse Transcriptase from a Non-long Terminal Repeat Retrotransposon* , 2002, The Journal of Biological Chemistry.

[10]  J. V. Moran,et al.  A comprehensive analysis of recently integrated human Ta L1 elements. , 2002, American journal of human genetics.

[11]  J. Kuriyan,et al.  Clamp loaders and sliding clamps. , 2002, Current opinion in structural biology.

[12]  A. Bibiłło,et al.  The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. , 2002, Journal of molecular biology.

[13]  A. Hizi,et al.  The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. , 2002, European journal of biochemistry.

[14]  E. Ostertag,et al.  Biology of mammalian L1 retrotransposons. , 2001, Annual review of genetics.

[15]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[16]  F. Bushman,et al.  Nucleic Acid Chaperone Activity of the ORF1 Protein from the Mouse LINE-1 Retrotransposon , 2001, Molecular and Cellular Biology.

[17]  S. Boissinot,et al.  L1 (LINE-1) retrotransposon evolution and amplification in recent human history. , 2000, Molecular biology and evolution.

[18]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[19]  A. Lever,et al.  Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5' and 3' of the catalytic site. , 1998, Nucleic acids research.

[20]  Y. Kew,et al.  Insertions into the β3-β4 Hairpin Loop of HIV-1 Reverse Transcriptase Reveal a Role for Fingers Subdomain in Processive Polymerization* , 1998, The Journal of Biological Chemistry.

[21]  H. Hohjoh,et al.  Sequence‐specific single‐strand RNA binding protein encoded by the human LINE‐1 retrotransposon , 1997, The EMBO journal.

[22]  K. Usdin,et al.  The ability to form intrastrand tetraplexes is an evolutionarily conserved feature of the 3' end of L1 retrotransposons. , 1997, Molecular biology and evolution.

[23]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[24]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[25]  A. D. Clark,et al.  Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Klarmann,et al.  Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. , 1993, The Journal of biological chemistry.

[27]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[28]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[29]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[30]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[31]  J. DeStefano,et al.  Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. , 1991, The Journal of biological chemistry.

[32]  L. Loeb,et al.  Synthesis of DNA by human immunodeficiency virus reverse transcriptase is preferentially blocked at template oligo(deoxyadenosine) tracts. , 1990, The Journal of biological chemistry.

[33]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[34]  A. Furano,et al.  The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1 (LINE) element. , 1989, The Journal of biological chemistry.

[35]  T. Fanning,et al.  The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. , 1987, Nucleic acids research.

[36]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[37]  June Corwin,et al.  Telomerase Catalytic Subunit Homologs from Fission Yeast and Human , 1997 .

[38]  J. Champoux 6 Roles of Ribonuclease H in Reverse Transcription , 1993 .

[39]  S. Hughes,et al.  Retroviral reverse transcription and integration: progress and problems. , 1992, Annual review of cell biology.