Conservative and accurate solution transfer between high-order and low-order refined finite element spaces

In this paper we introduce general transfer operators between high-order and low-order refined finite element spaces that can be used to couple high-order and low-order simulations. Under natural restrictions on the low-order refined space we prove that both the high-to-low-order and low-to-high-order linear mappings are conservative, constant preserving and high-order accurate. While the proofs apply to affine geometries, numerical experiments indicate that the results hold for more general curved and mixed meshes. These operators also have applications in the context of coarsening solution fields defined on meshes with nonconforming refinement. The transfer operators for H1 finite element spaces require a globally coupled solve, for which robust and efficient preconditioners are developed. We present several numerical results confirming our analysis and demonstrate the utility of the new mappings in the context of adaptive mesh refinement and conservative multi-discretization coupling.

[1]  Claudio Canuto,et al.  Stabilization of spectral methods by finite element bubble functions , 1994 .

[2]  Saul A. Teukolsky,et al.  Short note on the mass matrix for Gauss-Lobatto grid points , 2014, J. Comput. Phys..

[3]  Will Pazner,et al.  High-order matrix-free incompressible flow solvers with GPU acceleration and low-order refined preconditioners , 2019, ArXiv.

[4]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[5]  Per-Olof Persson,et al.  A Discontinuous Galerkin method for Shock Capturing using a mixed high-order and sub-grid low-order approximation space , 2019, J. Comput. Phys..

[6]  François Vilar,et al.  A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction , 2019, J. Comput. Phys..

[7]  B. T. Helenbrook,et al.  Application of “ p ”-multigrid to discontinuous Galerkin formulations of the Poisson equation , 2008 .

[8]  Jens Markus Melenk,et al.  On condition numbers in hp -FEM with Gauss-Lobatto-based shape functions , 2002 .

[9]  Tzanio V. Kolev,et al.  High-Order Multi-Material ALE Hydrodynamics , 2018, SIAM J. Sci. Comput..

[10]  Paul F. Fischer,et al.  Scalable Low-Order Finite Element Preconditioners for High-Order Spectral Element Poisson Solvers , 2019, SIAM J. Sci. Comput..

[11]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[12]  I. P. Mysovskih Approximate Calculation of Integrals , 1969 .

[13]  Gregor Gassner,et al.  An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive MHD Equations. Part II: Subcell Finite Volume Shock Capturing , 2020, J. Comput. Phys..

[14]  Martin Kronbichler,et al.  Multigrid for Matrix-Free High-Order Finite Element Computations on Graphics Processors , 2019, ACM Trans. Parallel Comput..

[15]  Tzanio V. Kolev,et al.  Nonconforming Mesh Refinement for High-Order Finite Elements , 2019, SIAM J. Sci. Comput..

[16]  Katharina Kormann,et al.  Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite Element Operators , 2017, ACM Trans. Math. Softw..

[17]  Giuseppe Mastroianni,et al.  Some new results on Lagrange interpolation for bounded variation functions , 2010, J. Approx. Theory.

[18]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[19]  Brian T. Helenbrook,et al.  Analysis of ``p''-Multigrid for Continuous and Discontinuous Finite Element Discretizations , 2003 .

[20]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[21]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[22]  Mario A. Casarin,et al.  Quasi-Optimal Schwarz Methods for the Conforming Spectral Element Discretization , 1995 .

[23]  Efficient High-Order Discretizations for Computational Fluid Dynamics , 2021, CISM International Centre for Mechanical Sciences.

[24]  Jens Markus Melenk,et al.  Fully discrete hp-finite elements: fast quadrature , 2001 .

[25]  Karl Ljungkvist,et al.  Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes , 2017, SpringSim.

[26]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[27]  Claudio Canuto,et al.  Finite-Element Preconditioning of G-NI Spectral Methods , 2009, SIAM J. Sci. Comput..

[28]  Veselin Dobrev,et al.  Monotonicity in high‐order curvilinear finite element arbitrary Lagrangian–Eulerian remap , 2015 .

[29]  Per-Olof Persson,et al.  Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods , 2017, J. Comput. Phys..

[30]  Gregor Gassner,et al.  An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification , 2018, J. Comput. Phys..

[31]  Hari Sundar,et al.  Comparison of multigrid algorithms for high‐order continuous finite element discretizations , 2014, Numer. Linear Algebra Appl..

[32]  Martin Kronbichler,et al.  Scalability of high-performance PDE solvers , 2020, Int. J. High Perform. Comput. Appl..

[33]  Will Pazner,et al.  Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods , 2019, SIAM J. Sci. Comput..

[34]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[35]  M. Anshelevich,et al.  Introduction to orthogonal polynomials , 2003 .

[36]  K K Chand,et al.  OSIRIS: A MODERN, HIGH-PERFORMANCE, COUPLED, MULTI- PHYSICS CODE FOR NUCLEAR REACTOR CORE ANALYSIS , 2007 .

[37]  R Rieben,et al.  The Multiphysics on Advanced Platforms Project , 2020 .

[38]  David A. Kopriva,et al.  Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes , 2006, J. Sci. Comput..

[39]  Stefano Zampini,et al.  MFEM: a modular finite element methods library , 2019, 1911.09220.

[40]  David E. Keyes,et al.  Efficiency of High Order Spectral Element Methods on Petascale Architectures , 2016, ISC.