Agricultural robots for field operations: Concepts and components

This review investigates the research effort, developments and innovation in agricultural robots for field operations, and the associated concepts, principles, limitations and gaps. Robots are highly complex, consisting of different sub-systems that need to be integrated and correctly synchronised to perform tasks perfectly as a whole and successfully transfer the required information. Extensive research has been conducted on the application of robots and automation to a variety of field operations, and technical feasibility has been widely demonstrated. Agricultural robots for field operations must be able to operate in unstructured agricultural environments with the same quality of work achieved by current methods and means. To assimilate robotic systems, technologies must be developed to overcome continuously changing conditions and variability in produce and environments. Intelligent systems are needed for successful task performance in such environments. The robotic system must be cost-effective, while being inherently safe and reliable—human safety, and preservation of the environment, the crop and the machinery are mandatory. Despite much progress in recent years, in most cases the technology is not yet commercially available. Information-acquisition systems, including sensors, fusion algorithms and data analysis, need to be adjusted to the dynamic conditions of unstructured agricultural environments. Intensive research is needed on integrating human operators into the system control loop for increased system performance and reliability. System sizes should be reduced while improving the integration of all parts and components. For robots to perform in agricultural environments and execute agricultural tasks, research must focus on: fusing complementary sensors for adequate localisation and sensing abilities, developing simple manipulators for each agricultural task, developing path planning, navigation and guidance algorithms suited to environments besides open fields and known a-priori, and integrating human operators in this complex and highly dynamic situation.

[1]  Yuanshen Zhao,et al.  Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion , 2016, Sensors.

[2]  Pierluigi Rea,et al.  Overall design of Ca.U.M.Ha. robotic hand for harvesting horticulture products , 2006, Robotica.

[3]  Yael Edan,et al.  Improvement of Work Methods in Tomato Greenhouses Using Simulation , 2007 .

[4]  J. Bontsema,et al.  An Autonomous Robot for Harvesting Cucumbers in Greenhouses , 2002, Auton. Robots.

[5]  Jochen Hemming,et al.  Fruit Detectability Analysis for Different Camera Positions in Sweet-Pepper † , 2014, Sensors.

[6]  Carlos Blanes,et al.  Assessment of eggplant firmness with accelerometers on a pneumatic robot gripper , 2015, Comput. Electron. Agric..

[7]  Gerrit Polder,et al.  A robot to detect and control broad‐leaved dock (Rumex obtusifolius L.) in grassland , 2011, J. Field Robotics.

[8]  Marc Carreras,et al.  A survey on coverage path planning for robotics , 2013, Robotics Auton. Syst..

[9]  Francisco Manzano-Agugliaro,et al.  Técnicas de estudio de tiempos para la planificación de la mano de obra en el cultivo de tomate (Solanum lycopersicum L.) de invernadero , 2009 .

[10]  Marco Bietresato,et al.  Evaluation and stability comparison of different vehicle configurations for robotic agricultural operations on side-slopes , 2015 .

[11]  Yael Edan,et al.  Changing Task Objectives for Improved Sweet Pepper Detection for Robotic Harvesting , 2016, IEEE Robotics and Automation Letters.

[12]  Nikos A. Aspragathos,et al.  Design and fuzzy control of a robotic gripper for efficient strawberry harvesting , 2014, Robotica.

[13]  Mitsuji Monta,et al.  Spraying Robot for Grape Production , 2003, FSR.

[14]  Mongkol Ekpanyapong,et al.  Automated three-wheel rice seeding robot operating in dry paddy fields , 2015 .

[15]  Rafael Vieira de Sousa,et al.  A Row Crop Following Behavior based on Primitive Fuzzy Behaviors for Navigation System of Agricultural Robots , 2013 .

[16]  Morten Bisgaard,et al.  An Autonomous Robotic System for Mapping Weeds in Fields , 2013 .

[17]  Itshak Tkach,et al.  Switching Between Collaboration Levels in a Human–Robot Target Recognition System , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[18]  J. Srinonchat,et al.  The correlated noise reducing model using a kalman filter for speech vector quantization , 2012, 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC).

[19]  Aaron Steinfeld,et al.  Interface lessons for fully and semi-autonomous mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  Claudio Urrea,et al.  Path Tracking of Mobile Robot in Crops , 2015, J. Intell. Robotic Syst..

[21]  P. P. Li,et al.  Mechanical and kinematic modeling of assistant vacuum sucking and pulling operation of tomato fruits in robotic harvesting , 2015 .

[22]  Qingquan Li,et al.  A Sensor-Fusion Drivable-Region and Lane-Detection System for Autonomous Vehicle Navigation in Challenging Road Scenarios , 2014, IEEE Transactions on Vehicular Technology.

[23]  E. J. van Henten,et al.  Development of a cucumber leaf picking device for greenhouse production , 2007 .

[24]  Seishu Tojo,et al.  Machine Vision Based Guidance System for Automatic Rice Transplanters , 2003 .

[25]  Xingjian Jing Behavior dynamics based motion planning of mobile robots in uncertain dynamic environments , 2005, Robotics Auton. Syst..

[26]  Philippe Martinet,et al.  Automatic Guidance of a Farm Tractor Relying on a Single CP-DGPS , 2002, Auton. Robots.

[27]  T. Bakker,et al.  Autonomous navigation using a robot platform in a sugar beet field , 2011 .

[28]  Mikio Umeda,et al.  Vision-based Navigation System for Autonomous Transportation Vehicle , 2005, Precision Agriculture.

[29]  William MacKunis,et al.  Robust visual servo control in the presence of fruit motion for robotic citrus harvesting , 2016, Comput. Electron. Agric..

[30]  Jan Tommy Gravdahl,et al.  Non-linear model predictive control for constrained robot navigation in row crops , 2015, 2015 IEEE International Conference on Industrial Technology (ICIT).

[31]  David C. Slaughter,et al.  Autonomous robotic weed control systems: A review , 2008 .

[32]  Thomas Bak,et al.  Agricultural Robotic Platform with Four Wheel Steering for Weed Detection , 2004 .

[33]  Gokhan Bayar,et al.  Localization and control of an autonomous orchard vehicle , 2015, Comput. Electron. Agric..

[34]  Maciej Trojnacki,et al.  Localization of the Wheeled Mobile Robot Based on Multi-Sensor Data Fusion , 2015 .

[35]  N. Kishore,et al.  Multi-Purpose Agricultural Robot , 2017 .

[36]  E. J. van Henten,et al.  Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper , 2013 .

[37]  Fang-fan Lee,et al.  Classification of Phalaenopsis Plantlet Parts and Identification of Suitable Grasping Point for Automatic Transplanting Using Machine Vision , 2008 .

[38]  K L Kerrisk,et al.  Effects of bail activation sequence and feed availability on cow traffic and milk harvesting capacity in a robotic rotary dairy. , 2013, Journal of dairy science.

[39]  Sigal Berman,et al.  Efficient sensory-grounded grasp pose quality mapping for gripper design and online grasp planning , 2014, Robotics Auton. Syst..

[40]  S. Fountas,et al.  Agricultural robots—system analysis and economic feasibility , 2006, Precision Agriculture.

[41]  Naoshi Kondo,et al.  Robotics for Plant Production , 1998, Artificial Intelligence Review.

[42]  Noboru Noguchi,et al.  Leader-follower system using two robot tractors to improve work efficiency , 2016, Comput. Electron. Agric..

[43]  Zhao Dean,et al.  System Design and Control of an Apple Harvesting Robot , 2020, ArXiv.

[44]  Patricio Nebot,et al.  Two-stage procedure based on smoothed ensembles of neural networks applied to weed detection in orange groves , 2014 .

[45]  Kunsoo Huh,et al.  Sensor Fusion Algorithm Design in Detecting Vehicles Using Laser Scanner and Stereo Vision , 2016, IEEE Transactions on Intelligent Transportation Systems.

[46]  Wang Ning,et al.  Automation and robotics in fresh horticulture produce packinghouse. , 2010 .

[47]  Thomas Bell Automatic tractor guidance using carrier-phase differential GPS. , 2000 .

[48]  Avital Bechar,et al.  Development of an environment characterization methodology for optimal design of an agricultural robot , 2017, Ind. Robot.

[49]  Francisco Manzano-Agugliaro,et al.  Economics and environmental analysis of Mediterranean greenhouse crops , 2010 .

[50]  D. K. Giles,et al.  Precision weed control system for cotton , 2002 .

[51]  Galen K. Brown,et al.  New Mechanical Harvesters for the Florida Citrus Juice Industry , 2005 .

[52]  T. Hesketh,et al.  Robust Time-Varying Model Predictive Control with Application to Mobile Robot Unmanned Path Tracking , 2014 .

[53]  Avital Bechar,et al.  Hand-held computers to increase accuracy and productivity in agricultural work study , 2014 .

[54]  Pedro Albertos,et al.  Multi Sensor Fusion Framework for Indoor-Outdoor Localization of Limited Resource Mobile Robots , 2013, Sensors.

[55]  D. Guinea,et al.  An agent of behaviour architecture for unmanned control of a farming vehicle , 2008 .

[56]  Yael Edan,et al.  Performance analysis of a human-robot collaborative target recognition system , 2012, Robotica.

[57]  Gook-Hwan Kim,et al.  A robot platform for unmanned weeding in a paddy field using sensor fusion , 2012, 2012 IEEE International Conference on Automation Science and Engineering (CASE).

[58]  Yael Edan,et al.  Robotics in protected cultivation , 2013 .

[59]  Wolfgang Heinemann,et al.  Development of a row guidance system for an autonomous robot for white asparagus harvesting , 2011 .

[60]  Shigehiko Hayashi,et al.  Robotic Harvesting System for Eggplants , 2002 .

[61]  Jose L Pons,et al.  Design and implementation of an aided fruit‐harvesting robot (Agribot) , 1998 .

[62]  Seweryn Lipiński,et al.  Precision of tractor operations with soil cultivation implements using manual and automatic steering modes , 2016 .

[63]  Carmen Benavides,et al.  Reducing air pollution with hybrid-powered robotic tractors for precision agriculture , 2016 .

[64]  Guillermo Rodríguez-Ortiz,et al.  A New Method to Evaluate Human-Robot System Performance , 2003, Auton. Robots.

[65]  Shigemune Taniwaki,et al.  Path Planning of Tomato Cluster Harvesting Robot for Realizing Low Vibration and Speedy Transportation , 2009 .

[66]  Thomas Hellström,et al.  Industrial Robot: An International Journal Emerald Article: A software framework for agricultural and forestry robots , 2013 .

[67]  Christopher D. Wickens,et al.  A model for types and levels of human interaction with automation , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[68]  Zhenfeng Li,et al.  Ripeness and rot evaluation of 'Tommy Atkins' mango fruit through volatiles detection. , 2009 .

[69]  Angela Ribeiro,et al.  Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks , 2015, Sensors.

[70]  Moshe P. Mann,et al.  Harvest-order planning for a multiarm robotic harvester , 2014 .

[71]  Eldert J. van Henten,et al.  Sensitivity analysis of a stochastic discrete event simulation model of harvest operations in a static rose cultivation system , 2013 .

[72]  Bjørn Gunnar Hansen,et al.  Robotic milking-farmer experiences and adoption rate in Jæren, Norway , 2015 .

[73]  Clément Vigneault,et al.  Spectral methods for measuring quality changes of fresh fruits and vegetables , 2008 .

[74]  Eam Khwang Teoh,et al.  Fuzzy speed and steering control of an AGV , 2002, IEEE Trans. Control. Syst. Technol..

[75]  Keigo Watanabe,et al.  Behavior Selection Based Navigation and Obstacle Avoidance Approach Using Visual and Ultrasonic Sensory Information for Quadruped Robots , 2008 .

[76]  Ahmad B. Rad,et al.  Incorporation of Feature Tracking into Simultaneous Localization and Map Building via Sonar Data , 2004, J. Intell. Robotic Syst..

[77]  Jangmyung Lee,et al.  In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation , 2015, Sensors.

[78]  Lav R. Khot,et al.  NAVIGATIONAL CONTEXT RECOGNITION FOR AN AUTONOMOUS ROBOT IN A SIMULATED TREE PLANTATION , 2006 .

[79]  Tien Thanh Nguyen,et al.  Task and Motion Planning for Apple Harvesting Robot , 2013 .

[80]  Rory C. Flemmer,et al.  Development of an autonomous kiwifruit picking robot , 2000, 2009 4th International Conference on Autonomous Robots and Agents.

[81]  M. Nørremark,et al.  Seed Mapping of Sugar Beet , 2005, Precision Agriculture.

[82]  Thomas B. Sheridan,et al.  Human–Robot Interaction , 2016, Hum. Factors.

[83]  Roemi Fernández,et al.  Multisensory System for Fruit Harvesting Robots. Experimental Testing in Natural Scenarios and with Different Kinds of Crops , 2014, Sensors.

[84]  Ijbf Ivo Adan,et al.  Designing the optimal robotic milking barn by applying a queuing network approach , 2003 .

[85]  Soohyun Kim,et al.  Design of paddy weeding robot , 2013, IEEE ISR 2013.

[86]  이훈,et al.  차선 변경 지원을 위한 레이더 및 비전센서 융합기반 다중 차량 인식 , 2013 .

[87]  Anders la Cour-Harbo,et al.  Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths , 2016, Robotics Auton. Syst..

[88]  Noboru Noguchi,et al.  Development of a master-slave robot system for farm operations , 2004 .

[89]  Zhenyu Yang,et al.  Plant-Wide Control for Better De-Oiling of Produced Water in Offshore Oil & Gas Production , 2013, ICONS.

[90]  Amir Degani,et al.  Stable and robust vehicle steering control using an overhead guide in greenhouse tasks , 2016, Comput. Electron. Agric..

[91]  Giovanni Muscato,et al.  A prototype of an orange picking robot: past history, the new robot and experimental results , 2005, Ind. Robot.

[92]  Eldert J. van Henten,et al.  Robotic weeding of a maize field based on navigation data of the tractor that performed the seeding , 2010 .

[93]  S. Shankar Sastry,et al.  A flight control system for aerial robots: algorithms and experiments , 2002 .

[94]  R. C. Harrell,et al.  Robotic picking of citrus , 1990, Robotica.

[95]  Gonzalo Pajares,et al.  Fleets of robots for precision agriculture: a simulation environment , 2013, Ind. Robot.

[96]  Sun Xue-yan,et al.  Design optimisation and simulation of structure parameters of an eggplant picking robot , 2007 .

[97]  Dionysis Bochtis,et al.  Advances in agricultural machinery management: A review , 2014 .

[98]  J. N. Wilson,et al.  Guidance of agricultural vehicles - a historical perspective. , 2000 .

[99]  David C. Slaughter,et al.  Co-robotic intra-row weed control system , 2014 .

[100]  Mikio Umeda,et al.  Development of “STORK”, a watermelon-harvesting robot , 1999, Artificial Life and Robotics.

[101]  E. J. van Henten,et al.  Stem localization of sweet-pepper plants using the support wire as a visual cue , 2014 .

[102]  Liu Zunmin,et al.  Study and experiment on a wheat precision seeding robot , 2015 .

[103]  Tristan Perez,et al.  Optimisation-based Design of a Manipulator for Harvesting Capsicum , 2015 .

[104]  Yi-Chich Chiu,et al.  Development of the End-Effector of a Picking Robot for Greenhouse-Grown Tomatoes , 2013 .

[105]  Kazunobu Ishii,et al.  Development of a Robot Combine Harvester for Wheat and Paddy Harvesting , 2013 .

[106]  Yutaka Kikuchi,et al.  A Robot System for Paddy Field Farming in Japan , 2013 .

[107]  Yael Edan,et al.  An Objective Function to Evaluate Performance of Human–Robot Collaboration in Target Recognition Tasks , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[108]  Yibin Ying,et al.  Recognition of clustered tomatoes based on binocular stereo vision , 2014 .

[109]  Jun Ma,et al.  Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot , 2014 .

[110]  Randy L. Raper,et al.  The Economic Benefit of Improving the Proximity of Tillage and Planting Operations in Cotton Production with Automatic Steering , 2009 .

[111]  Lars Grimstad,et al.  On the design of a low-cost, light-weight, and highly versatile agricultural robot , 2015, 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO).

[112]  Giulio Reina,et al.  Agricultural robot for radicchio harvesting , 2006, J. Field Robotics.

[113]  Myoungho Sunwoo,et al.  Road Slope Aided Vehicle Position Estimation System Based on Sensor Fusion of GPS and Automotive Onboard Sensors , 2016, IEEE Transactions on Intelligent Transportation Systems.

[114]  Zhiguo Li,et al.  Stability tests of two-finger tomato grasping for harvesting robots , 2013 .

[115]  Avital Bechar,et al.  Economical evaluation of greenhouse layout design , 2011 .

[116]  Ruben Ruiz-Gonzalez,et al.  A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors , 2013, Sensors.

[117]  Jianping Hu,et al.  Development of a Pincette-Type Pick-Up Device for Automatic Transplanting of Greenhouse Seedlings , 2014 .

[118]  Vijay Subramanian,et al.  Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation , 2006 .

[119]  Santiago Tosetti,et al.  Optimization methodology to fruit grove mapping in precision agriculture , 2015, Comput. Electron. Agric..

[120]  Gustavo Belforte,et al.  Robot Design and Testing for Greenhouse Applications , 2006 .

[121]  L. J. Kutz,et al.  Robotic Transplanting of Bedding Plants , 1987 .

[122]  Nicolas Tremblay,et al.  Sensing of Crop Nitrogen Status: Opportunities, Tools, Limitations, and Supporting Information Requirements , 2011 .

[123]  Thomas Rath,et al.  Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels , 2009 .

[124]  Alexandre Escolà,et al.  Algebraic path tracking to aid the manual harvesting of olives using an automated service unit , 2016 .

[125]  Moshe P. Mann,et al.  Motion Planning of a Mobile Cartesian Manipulator for Optimal Harvesting of 2-D Crops , 2014 .

[126]  Thomas F. Burks,et al.  A Real-time Machine Vision Algorithm for Robotic Citrus Harvesting , 2007 .

[127]  Marina L. Gavrilova,et al.  Roadmap-Based Path Planning - Using the Voronoi Diagram for a Clearance-Based Shortest Path , 2008, IEEE Robotics & Automation Magazine.

[128]  Moharam Habibnejad Korayem,et al.  Symbolic derivation of governing equations for dual-arm mobile manipulators used in fruit-picking and the pruning of tall trees , 2014 .

[129]  Moshe P. Mann,et al.  Determination of robotic melon harvesting efficiency: a probabilistic approach , 2016 .

[130]  S. Guillaume,et al.  Development and validation of fuzzy logic inference to determine optimum rates of N for corn on the basis of field and crop features , 2010, Precision Agriculture.

[131]  Jacob Goldberger,et al.  Obstacle detection in a greenhouse environment using the Kinect sensor , 2015, Comput. Electron. Agric..

[132]  Salah Sukkarieh,et al.  Lidar‐Based Tree Recognition and Platform Localization in Orchards , 2015, J. Field Robotics.

[133]  Reza Ehsani,et al.  Task Assignment and Trajectory Planning Algorithm for a Class of Cooperative Agricultural Robots , 2015 .

[134]  Francisco Rovira-Más,et al.  The role of GNSS in the navigation strategies of cost-effective agricultural robots , 2015, Comput. Electron. Agric..

[135]  Chieri Kubota,et al.  Vegetable Grafting: History, Use, and Current Technology Status in North America , 2008 .

[136]  Yael Edan,et al.  An adaptive path classification algorithm for a pepper greenhouse sprayer , 2011 .

[137]  Vijay Subramanian,et al.  Engineering and Horticultural Aspects of Robotic Fruit Harvesting: Opportunities and Constraints , 2005 .

[138]  Herman Herman,et al.  A System for Semi-Autonomous Tractor Operations , 2002, Auton. Robots.

[139]  Shimon Y. Nof,et al.  Laser and Photonic Systems Integration: Emerging Innovations and Framework for Research and Education , 2013 .

[140]  Kenta Shigematsu,et al.  Evaluation of a strawberry-harvesting robot in a field test , 2010 .

[141]  S. Hiremath,et al.  Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter , 2014 .

[142]  N Kondo,et al.  Fruit harvesting robots in Japan. , 1996, Advances in space research : the official journal of the Committee on Space Research.

[143]  Ning Wang,et al.  Early detection of apple bruises on different background colors using hyperspectral imaging , 2008 .

[144]  N. D. Tillett,et al.  Mechanical within-row weed control for transplanted crops using computer vision , 2008 .

[145]  Mitsuji Monta,et al.  End-Effectors for Tomato Harvesting Robot , 1998, Artificial Intelligence Review.

[146]  Seishu Tojo,et al.  Machine Vision for a Micro Weeding Robot in a Paddy Field , 2003 .

[147]  J. Qiao,et al.  Mapping Yield and Quality using the Mobile Fruit Grading Robot , 2005 .

[148]  N. Noguchi,et al.  Unmanned Rice-Transplanting Operation Using a GPS-Guided Rice Transplanter with Long Mat-Type Hydroponic Seedlings , 2007 .

[149]  Yael Edan,et al.  Design of an Agricultural Robot for Harvesting Melons , 1993 .

[150]  Avital Bechar,et al.  Robotic Disease Detection in Greenhouses: Combined Detection of Powdery Mildew and Tomato Spotted Wilt Virus , 2016, IEEE Robotics and Automation Letters.

[151]  M E Montoya-García,et al.  Assessment of psychosocial risks faced by workers in Almería-type greenhouses, using the Mini Psychosocial Factor method. , 2013, Applied ergonomics.

[152]  Avital Bechar,et al.  Robotics in horticultural field production. , 2010 .

[153]  Luke Fletcher,et al.  Correlating driver gaze with the road scene for driver assistance systems , 2005, Robotics Auton. Syst..

[154]  F. Garbati Pegna,et al.  Automatic Guidance of a Tractor in a Vineyard , 2002 .

[155]  Qin Zhang Opportunity of Robotics in Specialty Crop Production , 2013 .

[156]  Yutaka Kaizu,et al.  Two-stage approach for detecting slightly overlapping strawberries using HOG descriptor , 2013 .

[157]  Kalevi Tervo,et al.  Adaptation of the human-machine interface to the human skill and dynamic characteristics , 2014 .

[158]  Kyung Ha Ryu,et al.  AE—Automation and Emerging Technologies: Development of a Robotic Transplanter for Bedding Plants , 2001 .

[159]  Eric Claesen,et al.  Autonomous Fruit Picking Machine: A Robotic Apple Harvester , 2007, FSR.

[160]  Marco Bietresato,et al.  Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications , 2016, Comput. Electron. Agric..

[161]  Pablo González de Santos,et al.  Reducing fuel consumption in weed and pest control using robotic tractors , 2015, Comput. Electron. Agric..

[162]  Hossein Mousazadeh,et al.  A technical review on navigation systems of agricultural autonomous off-road vehicles , 2013 .

[163]  Simon X. Yang,et al.  Abscission Point Extraction for Ripe Tomato Harvesting Robots , 2012, Intell. Autom. Soft Comput..

[164]  Earl D. Vories,et al.  Corn response to nitrogen is influenced by soil texture and weather , 2012 .

[165]  Kyung-Soo Kim,et al.  Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields , 2015, Comput. Electron. Agric..

[166]  E. J. van Henten,et al.  Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot , 2010 .

[167]  Siddhartha S. Mehta,et al.  Vision-based control of robotic manipulator for citrus harvesting , 2014 .

[168]  Gianfranco Lamperti,et al.  AMMETH: a methodology for requirements analysis of advanced human-system interfaces , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[169]  Katsuaki Ohdoi,et al.  Advanced Harvesting System by using a Combine Robot , 2013 .

[170]  Juan Pablo Wachs,et al.  A review and framework of laser-based collaboration support , 2015, Annu. Rev. Control..

[171]  Mitsuji Monta,et al.  Development of an End-Effector for a Tomato Cluster Harvesting Robot , 2010 .

[172]  John F. Reid,et al.  MACHINE VISION–BASED GUIDANCE SYSTEM FOR AN AGRICULTURAL SMALL–GRAIN HARVESTER , 2003 .

[173]  Gerrit van Straten,et al.  Field robot event, Wageningen, 5-6 June 2003 , 2004 .

[174]  Y. Cui,et al.  Study on Cartesian-Type Strawberry-Harvesting Robot , 2013 .

[175]  Tateshi Fujiura,et al.  Cherry-harvesting robot , 2008 .

[176]  John Canning,et al.  DEVELOPMENT OF A FUZZY LOGIC CONTROLLER FOR AUTONOMOUS FOREST PATH NAVIGATION , 2004 .

[177]  G.W.A.M. van der Heijden,et al.  The role of textures to improve the detection accuracy of Rumex obtusifolius in robotic systems , 2012 .

[178]  T. F. Burks,et al.  GEOMETRIC PERFORMANCE INDICES FOR ANALYSIS AND SYNTHESIS OF MANIPULATORS FOR ROBOTIC HARVESTING , 2006 .

[179]  Dionysis Bochtis,et al.  Original paper: Path planning for in-field navigation-aiding of service units , 2010 .

[180]  Koichi Osuka,et al.  Design and control of a heavy material handling manipulator for agricultural robots , 2008, Auton. Robots.

[181]  P. Nelson,et al.  Greenhouse operation and management. , 1991 .

[182]  Yael Edan,et al.  Human-robot collaboration for improved target recognition of agricultural robots , 2003, Ind. Robot.

[183]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[184]  Kazuto Shigeta,et al.  An Automated Rice Transplanter with RTKGPS and FOG , 2002 .

[185]  Yoshisada Nagasaka,et al.  Autonomous guidance for rice transplanting using global positioning and gyroscopes , 2004 .

[186]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[187]  Nicolas Tremblay,et al.  Sensing crop nitrogen status with fluorescence indicators. A review , 2011, Agronomy for Sustainable Development.

[188]  Hans W. Griepentrog,et al.  A Specification for an Autonomous Crop Production Mechanization System , 2007 .

[189]  Angela Ribeiro,et al.  Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot , 2016, Sensors.

[190]  D. Bulanon,et al.  A Segmentation Algorithm for the Automatic Recognition of Fuji Apples at Harvest , 2002 .

[191]  Yael Edan,et al.  Robotic melon harvesting , 2000, IEEE Trans. Robotics Autom..

[192]  Katsuhiko Tamaki,et al.  A rice transplanting robot contributing to credible food safety system , 2009, 2009 IEEE Workshop on Advanced Robotics and its Social Impacts.

[193]  E. J. van Henten,et al.  Optimal manipulator design for a cucumber harvesting robot , 2009 .

[194]  Albert-Jan Baerveldt,et al.  A vision based row-following system for agricultural field machinery , 2005 .

[195]  N. D. Tillett,et al.  Ground based sensing systems for autonomous agricultural vehicles , 2000 .

[196]  T. Horie,et al.  Asparagus harvesting robot coordinated with 3-D vision sensor , 2009, 2009 IEEE International Conference on Industrial Technology.

[197]  Mohan M. Trivedi,et al.  A neuro-fuzzy controller for mobile robot navigation and multirobot convoying , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[198]  Jaime Gómez Gil,et al.  A Simple Method to Improve Autonomous GPS Positioning for Tractors , 2011, Sensors.