Coherent wavefield subtraction for diffraction separation

Diffractions encode sub-wavelength information and superior illumination but are weak in amplitude and strongly interfere with the more dominant reflected wavefield. Accordingly, the successful separation of diffractions in geophysical applications still forms a major direction of research. Confronting this challenge, an automatable and versatile framework for the separation of interfering wavefields through a sequence of coherent data summation and subtraction is proposed. In contrast to other studies utilizing coherence measurements, the method specifically targets reflected contributions, which are normally favored in automated summation schemes, and adaptively subtracts the resulting reflection stack from the input data. Complementing this natural selectivity of stacking, a variety of wavefront filters is presented, which can be derived from the local maximization of the semblance norm and additionally inform the subsequent separation step. Complex 2D and 3D synthetic pre- and poststack seismic examples together with a ground-penetrating radar (GPR) field data example suggest that the presented scheme can be applied to a variety of data configurations and bears the potential to uncover an extremely faint but surprisingly rich diffraction background that was previously not accessible for dedicated processing.

[1]  Dirk Gajewski,et al.  5-D interpolation with wave-front attributes , 2017 .

[2]  Vladimir Grechka,et al.  3-D description of normal moveout in anisotropic inhomogeneous media , 1998 .

[3]  W. Harry Mayne,et al.  Common Reflection Point Horizontal Data Stacking Techniques , 1962 .

[4]  Sergey Fomel,et al.  Velocity analysis using AB semblance , 2009 .

[5]  N. Müller,et al.  Treatment of conflicting dips in the 3D common‐reflection‐surface stack , 2009 .

[6]  Luiz Alberto Santos,et al.  Tomography of diffraction-based focusing operators , 2012 .

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  S. Fomel,et al.  3D generalized nonhyperboloidal moveout approximation , 2015 .

[9]  M. Baykulov,et al.  Prestack seismic data enhancement with partial common-reflection-surface (CRS) stack , 2009 .

[10]  Peter Hubral,et al.  3D common-reflection-surface stack and kinematic wavefield attributes , 2002 .

[11]  A. Guitton,et al.  Adaptive subtraction of multiples using the L1‐norm , 2004 .

[12]  D. Gajewski,et al.  A generalized view on normal moveout , 2017 .

[13]  D. J. Verschuur,et al.  Adaptive surface-related multiple elimination , 1992 .

[14]  Theodor Krey THE SIGNIFICANCE OF DIFFRACTION IN THE INVESTIGATION OF FAULTS , 1952 .

[15]  W. Symes,et al.  Diffraction imaging by prestack reverse‐time migration in the dip‐angle domain , 2017 .

[16]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[17]  D. Gajewski,et al.  Utilizing diffractions in wavefront tomography , 2017 .

[18]  Martin Tygel,et al.  Seismic Coherency Measures in Case of Interfering Events: A Focus on the Most Promising Candidates of Higher-Resolution Algorithms , 2012, IEEE Signal Processing Magazine.

[19]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[20]  Peter Hubral,et al.  Common-reflection-surface stack: Image and attributes , 2001 .

[21]  T. Moser,et al.  Diffraction imaging in depth , 2008 .

[22]  Application of the 3D common‐reflection‐surface stack workflow in a crystalline rock environment , 2015 .

[23]  Sergey Fomel,et al.  Generalized nonhyperbolic moveout approximation , 2009 .

[24]  D. Gajewski,et al.  Common-reflection-surface-based workflow for diffraction imaging , 2011 .

[25]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[26]  E. Landa,et al.  Seismic monitoring of diffraction images for detection of local heterogeneities , 1998 .

[27]  B. Schwarz,et al.  Enhancement of prestack diffraction data and attributes using a traveltime decomposition approach , 2016, Studia Geophysica et Geodaetica.

[28]  P. Hubral,et al.  PARABOLIC AND HYPERBOLIC PARAXIAL TWO‐POINT TRAVELTIMES IN 3D MEDIA1 , 1993 .

[29]  Evgeny Landa,et al.  Diffraction imaging by multifocusing , 2009 .

[30]  Peter Hubral,et al.  Common‐reflection‐surface (CRS) stack for common offset , 2001 .

[31]  T. Moser,et al.  Diffraction imaging by focusing‐defocusing: An outlook on seismic superresolution , 2004 .

[32]  Sergey Fomel,et al.  Separation and imaging of seismic diffractions using migrated dip-angle gathers , 2012 .

[33]  Bjoern Ursin,et al.  Quadratic wavefront and traveltime approximations in inhomogeneous layered media with curved interfaces , 1982 .

[34]  Diffraction Imaging with Geometric-mean Reverse Time Migration , 2017 .

[35]  Moshe Reshef,et al.  Post‐stack velocity analysis in the dip‐angle domain using diffractions , 2009 .

[36]  Evgeny Landa,et al.  Operator‐oriented CRS interpolation , 2009 .

[37]  M. Turhan Taner,et al.  Velocity spectra-digital computer derivation and applications of velocity functions , 1969 .

[38]  R. Krummenauer,et al.  Differential evolution-based optimization procedure for automatic estimation of the common-reflection surface traveltime parameters , 2015 .

[39]  D. Gajewski,et al.  Accessing the diffracted wavefield by coherent subtraction , 2017 .

[40]  Evgenii Kozlov,et al.  Imaging scattering objects masked by specular reflections , 2004 .

[41]  D. Gajewski,et al.  Determination of wavefront attributes by differential evolution in the presence of conflicting dips , 2017 .

[42]  P. Hubral Computing true amplitude reflections in a laterally inhomogeneous earth , 1983 .

[43]  B. Gelchinsky,et al.  Multifocusing homeomorphic imaging. Part 1. Basic concepts and formulas , 1999 .

[44]  Dirk Gajewski,et al.  Common-reflection-surface-based prestack diffraction separation and imaging , 2018 .

[45]  B. Gelchinsky,et al.  Multifocusing homeomorphic imaging: Part 2. Multifold data set and multifocusing , 1999 .

[46]  Fabio Rocca,et al.  3-D Modeling Project: 3rd report , 1995 .

[47]  T. Moser,et al.  Seismic diffractions: How it all began , 2017 .

[48]  Sergey Fomel,et al.  Poststack velocity analysis by separation and imaging of seismic diffractions , 2007 .

[49]  M. Taner,et al.  SEMBLANCE AND OTHER COHERENCY MEASURES FOR MULTICHANNEL DATA , 1971 .