Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree
暂无分享,去创建一个
[1] Lee-Ad Gottlieb,et al. An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.
[2] Bernard Chazelle,et al. Computing on a free tree via complexity-preserving mappings , 1984, Algorithmica.
[3] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[4] Tamás Lukovszki,et al. New Results of Fault Tolerant Geometric Spanners , 1999, WADS.
[5] S. Rao Kosaraju,et al. Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.
[6] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[7] Robert E. Tarjan,et al. Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.
[8] Anupam Gupta,et al. Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.
[9] Sariel Har-Peled,et al. Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.
[10] Giri Narasimhan,et al. Fast algorithms for constructing t-spanners and paths with stretch t , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[11] Michael Langberg,et al. Fault-tolerant spanners for general graphs , 2009, STOC '09.
[12] Artur Czumaj,et al. Fault-Tolerant Geometric Spanners , 2004, Discret. Comput. Geom..
[13] Giri Narasimhan,et al. Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.
[14] T-H. Hubert Chan,et al. Small hop-diameter sparse spanners for doubling metrics , 2006, SODA 2006.
[15] Robert Krauthgamer,et al. Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[16] Bruce M. Maggs,et al. On hierarchical routing in doubling metrics , 2005, SODA '05.
[17] Michael Elkin,et al. Balancing Degree, Diameter and Weight in Euclidean Spanners , 2010, ESA.
[18] Michael Dinitz,et al. Fault-tolerant spanners: better and simpler , 2011, PODC '11.