Effects of vibrational excitation on multidimensional tunneling: General study and proton tunneling in tropolone

Tunneling energy splittings of vibrationally excited states are calculated quantum mechanically using several models of two‐dimensional symmetric double well potentials. Various effects of vibrational excitation on tunneling are found to appear, depending on the topography of potential energy surface; the symmetry of the mode coupling plays an essential role. Especially, oscillation of tunneling splitting with respect to vibrational quantum number can occur and is interpreted by a clear physical picture based on the semiclassical theory formulated recently [Takada and Nakamura, J. Chem. Phys. 100, 98 (1994)]. The mixed tunneling in the C region found there allows the wave functions to have nodal lines in classically inaccessible region and can cause the suppression of the tunneling. The above analysis is followed by the interpretation of recent experiments of proton tunneling in tropolone. Ab initio molecular orbital calculations are carried out for the electronically ground state. A simple three‐dimensio...

[1]  E. Pollak,et al.  Quantum variational transition state theory revisited , 1993 .

[2]  Victor Pavlovich Maslov,et al.  Semi-classical approximation in quantum mechanics , 1981 .

[3]  M. Wilkinson Tunnelling between tori in phase space , 1986 .

[4]  J. Hollas,et al.  The 370-nm electronic spectrum of tropolone: Evidence from single vibronic level fluorescence spectra regarding the assignment of some vibrational fundamentals in the X̃ and à states , 1985 .

[5]  J. Light,et al.  Efficient pointwise representations for vibrational wave functions: Eigenfunctions of H+3 , 1989 .

[6]  J. Hollas,et al.  The near ultra-violet absorption spectrum of tropolone vapour , 1973 .

[7]  R. L. Redington,et al.  Ã 1B2–X̃ 1A1 26v0 transitions of 18O‐enriched tropolone , 1990 .

[8]  Curtis G. Callan,et al.  Fate of the false vacuum. II. First quantum corrections , 1977 .

[9]  T. Tsuji,et al.  Vibrational mode-specific tunneling splittings in the à states of deuterated tropolones , 1991 .

[10]  Tucker Carrington,et al.  Reaction surface description of intramolecular hydrogen atom transfer in malonaldehyde , 1986 .

[11]  C. Herring CRITIQUE OF THE HEITLER-LONDON METHOD OF CALCULATING SPIN COUPLINGS AT LARGE DISTANCES , 1962 .

[12]  J. Gervais,et al.  WKB wave function for systems with many degrees of freedom: A unified view of solitons and pseudoparticles , 1977 .

[13]  G. Mil'nikov,et al.  Tunneling splittings in model 2D potentials: I. V(X,Y) = V0(Y2-Y20)2 + 12Ω21X2 + 14αX4 + CX2Y2 , 1994 .

[14]  J. Sethna Phonon coupling in tunneling systems at zero temperature: An instanton approach , 1981 .

[15]  Michael Baer,et al.  Theory of chemical reaction dynamics , 1985 .

[16]  S. Kivelson,et al.  THE PATH DECOMPOSITION EXPANSION AND MULTIDIMENSIONAL TUNNELING , 1985 .

[17]  L. Brus,et al.  Proton tunneling dynamics and an isotopically dependent equilibrium geometry in the lowest excited π–π* singlet state of tropolone , 1980 .

[18]  Paul F. Barbara,et al.  A theoretical study of multidimensional nuclear tunneling in malonaldehyde , 1989 .

[19]  Richard W. Duerst,et al.  Microwave spectroscopic study of malonaldehyde. 3. Vibration-rotation interaction and one-dimensional model for proton tunneling , 1984 .

[20]  R. L. Redington,et al.  Laser fluorescence excitation spectrum of jet‐cooled tropolone: The à 1B2–X̃ 1A1 system , 1988 .

[21]  R. L. Redington Heavy atoms and tunneling in the X̃ state of tropolone , 1990 .

[22]  R. L. Redington,et al.  Tropolone monomer: Vibrational spectrum and proton tunneling , 1979 .

[23]  A. Messiah Quantum Mechanics , 1961 .

[24]  J. Bertrán,et al.  Bidimensional tunneling dynamics of malonaldehyde and hydrogenoxalate anion. A comparative study , 1990 .

[25]  H. Sekiya,et al.  Electronic spectra of jet-cooled tropolone. Effect of the vibrational excitation on the proton tunneling dynamics , 1990 .

[26]  W. Miller,et al.  Complex‐Valued Classical Trajectories for Linear Reactive Collisions of H + H2 below the Classical Threshold , 1972 .

[27]  M. Ovchinnikova The tunneling dynamics of the low temperature H exchange reactions , 1979 .

[28]  A. Zichichi The Whys of Subnuclear Physics , 1979 .

[29]  Michael E. Coltrin,et al.  A new tunneling path for reactions such as H+H2→H2+H , 1977 .

[30]  Hiroki Nakamura,et al.  Dynamics of collinear asymmetric light atom transfer reactions , 1985 .

[31]  A. Mori,et al.  18O/16O isotope effect on the laser fluorescence excitation spectrum of jet-cooled tropolone , 1990 .

[32]  Y. Ikegami Infrared Spectra of Troponoid Compounds. III. Tropolone and 2-Deuteroxytropone , 1961 .

[33]  B. Chance Tunneling in biological systems , 1979 .

[34]  Shoji Takada,et al.  Wentzel–Kramers–Brillouin theory of multidimensional tunneling: General theory for energy splitting , 1994 .

[35]  B. C. Garrett,et al.  Variational transition state theory and tunneling for a heavy–light–heavy reaction using an ab initio potential energy surface. 37Cl+H(D) 35Cl→H(D) 37Cl+35Cl , 1983 .

[36]  Abe,et al.  Role of mass renormalization in adiabatic quantum tunneling. , 1994, Physical review. C, Nuclear physics.

[37]  R. L. Redington,et al.  MO study of singlets, triplets, and tunneling in tropolone. 1. Geometries, tunneling, and vibrations in the ground electronic state , 1991 .

[38]  D. Makarov,et al.  Quantum chemical dynamics in two dimensions , 1993 .