The ImmunoGrid Simulator: How to Use It

In this paper we present the ImmunoGrid project, whose goal is to develop an immune system simulator which integrates molecular and system level models with Grid computing resources for large-scale tasks and databases. We introduce the models and the technologies used in the ImmunoGrid Simulator, showing how to use them through the ImmunoGrid web interface. The ImmunoGrid project has proved that simulators can be used in conjunction with grid technologies for drug and vaccine discovery, demonstrating that it is possible to drastically reduce the developing time of such products.

[1]  Adrian J. Shepherd,et al.  A computational Grid framework for immunological applications , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Roger Menday,et al.  DESHL--Standards Based Access to a Heterogeneous European Supercomputing Infrastructure , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).

[3]  Vladimir Brusic,et al.  Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research , 2008, BMC Bioinformatics.

[4]  Salvatore Musumeci,et al.  Modeling immune system control of atherogenesis , 2008, Bioinform..

[5]  Adrian J. Shepherd,et al.  Towards a lightweight generic computational grid framework for biological research , 2008, BMC Bioinformatics.

[6]  Massimo Bernaschi,et al.  Mutation, fitness, viral diversity, and predictive markers of disease progression in a computational model of HIV type 1 infection. , 2004, AIDS research and human retroviruses.

[7]  Søren Brunak,et al.  Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach , 2004, Bioinform..

[8]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[9]  Yang Li,et al.  An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe , 2005, Nucleic acids research.

[10]  A. Stephen McGough,et al.  A standards based approach to enabling legacy applications on the Grid , 2008, Future Gener. Comput. Syst..

[11]  I. Bozic,et al.  Prediction of supertype-specific HLA class I binding peptides using support vector machines. , 2007, Journal of immunological methods.

[12]  Filippo Castiglione,et al.  Modeling and simulation of cancer immunoprevention vaccine , 2005, Bioinform..

[13]  Yoram Louzoun,et al.  The evolution of mathematical immunology , 2007, Immunological reviews.

[14]  Lei Huang,et al.  A probabilistic meta-predictor for the MHC class II binding peptides , 2007, Immunogenetics.

[15]  O. Lund,et al.  The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage , 2005, Immunogenetics.

[16]  J Zeleznikow,et al.  Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. , 2001, Journal of molecular graphics & modelling.

[17]  Gary B. Fogel,et al.  Computational intelligence approaches for pattern discovery in biological systems , 2008, Briefings Bioinform..

[18]  F Castiglione,et al.  An enhanced agent based model of the immune system response. , 2006, Cellular immunology.

[19]  U. Becciani The Cometa Consortium and the PI2S2 project , 2009 .

[20]  Vladimir Brusic,et al.  Proteome informatics for cancer research: From molecules to clinic , 2007, Proteomics.

[21]  Filippo Castiglione,et al.  Simulating the Immune Response on a Distributed Parallel Computer , 1997 .

[22]  Xinnan Niu,et al.  A computational and analysis tool for proteomics research , 2008, BMC Bioinformatics.

[23]  O. Lund,et al.  NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence , 2007, PloS one.

[24]  Vladimir Brusic,et al.  Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms , 2007, BMC Bioinformatics.

[25]  Mathilde Romberg The UNICORE architecture: seamless access to distributed resources , 1999, Proceedings. The Eighth International Symposium on High Performance Distributed Computing (Cat. No.99TH8469).

[26]  Abdul Salam Jarrah,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm044 Systems biology Simulating Epstein-Barr virus infection with C-ImmSim , 2022 .

[27]  M. Lefranc IMGT, the International ImMunoGeneTics Information System. , 2011, Cold Spring Harbor protocols.

[28]  V. Brusic,et al.  Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research , 2008, BMC Immunology.

[29]  Marco Roos,et al.  The promise of a virtual lab in drug discovery. , 2006, Drug discovery today.

[30]  F. Castiglione,et al.  Computational modeling of the immune response to tumor antigens: implications for vaccination , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[31]  M. Harnett,et al.  Laser scanning cytometry: understanding the immune system in situ , 2007, Nature Reviews Immunology.

[32]  Peter B. McGarvey,et al.  An emerging cyberinfrastructure for biodefense pathogen and pathogen–host data , 2007, Nucleic Acids Res..

[33]  Ian T. Foster,et al.  Globus: a Metacomputing Infrastructure Toolkit , 1997, Int. J. High Perform. Comput. Appl..

[34]  Uthaman Gowthaman,et al.  In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. , 2008, Journal of proteome research.

[35]  A. Purcell,et al.  Immunoproteomics: Mass spectrometry-based methods to study the targets of the immune response. , 2004, Molecular & cellular proteomics : MCP.

[36]  Vladimir Brusic,et al.  MHCPEP, a database of MHC-binding peptides: update 1996 , 1997, Nucleic Acids Res..

[37]  Vladimir Brusic,et al.  Computational methods for prediction of T-cell epitopes--a framework for modelling, testing, and applications. , 2004, Methods.

[38]  Vladimir Brusic,et al.  MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides , 2005, Nucleic Acids Res..

[39]  Matthew N Davies,et al.  Harnessing bioinformatics to discover new vaccines. , 2007, Drug discovery today.

[40]  V. Bajic,et al.  Systems biology of innate immunity. , 2006, Cellular immunology.

[41]  O. Lund,et al.  An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions , 2005, European journal of immunology.

[42]  Patrice Duroux,et al.  IMGT, a system and an ontology that bridge biological and computational spheres in bioinformatics , 2008, Briefings Bioinform..

[43]  Channa K. Hattotuwagama,et al.  AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data , 2005, Immunome research.

[44]  F. Pappalardo,et al.  Analysis of vaccine's schedules using models. , 2006, Cellular immunology.

[45]  Filippo Castiglione,et al.  Modelling vaccination schedules for a cancer immunoprevention vaccine , 2005, Immunome research.

[46]  Ellis L. Reinherz,et al.  Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles , 2004, Immunogenetics.

[47]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[48]  Morten Nielsen,et al.  Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction , 2007, BMC Bioinformatics.

[49]  D. Lauffenburger,et al.  Applying computational modeling to drug discovery and development. , 2006, Drug discovery today.

[50]  Mikael Bodén,et al.  Understanding Prediction Systems for HLA-Binding Peptides and T-Cell Epitope Identification , 2007, PRIB.

[51]  András Falus Immunogenomics and human disease , 2006 .

[52]  S. Henrickson,et al.  T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases , 2004, Nature.

[53]  Marc K Jenkins,et al.  Visualizing the first 50 hr of the primary immune response to a soluble antigen. , 2004, Immunity.

[54]  Filippo Castiglione,et al.  The Role of Computational Models of the Immune System in Designing Vaccination Strategies , 2005, Immunopharmacology and immunotoxicology.

[55]  Massimo Bernaschi,et al.  Computational modeling of the immune response to tumor antigens , 2005 .

[56]  Philip E. Bourne,et al.  The Immune Epitope Database and Analysis Resource , 2006, PRIB.

[57]  Vladimir Brusic,et al.  Mathematical Modelling of the Immune System , 2004 .

[58]  Peter V. Coveney,et al.  The application hosting environment: Lightweight middleware for grid-based computational science , 2007, Comput. Phys. Commun..

[59]  Gabriel Ciobanu,et al.  Modelling in Molecular Biology , 2004, Natural Computing Series.

[60]  John Hallam,et al.  Artificial intelligence and robotics in high throughput post-genomics. , 2005, Drug discovery today.

[61]  P E Seiden,et al.  A computer model of cellular interactions in the immune system. , 1992, Immunology today.

[62]  Morten Nielsen,et al.  Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method , 2007, BMC Bioinformatics.

[63]  M. L. Martins,et al.  Morphology transitions induced by chemotherapy in carcinomas in situ. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Francesco Pappalardo,et al.  Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator , 2006, BMC Bioinformatics.

[65]  Andrew Yates,et al.  An Approach to Modelling in Immunology , 2001, Briefings Bioinform..

[66]  N. Sachdeva,et al.  Cytokine quantitation: technologies and applications. , 2007, Frontiers in bioscience : a journal and virtual library.

[67]  Morten Nielsen,et al.  Improved method for predicting linear B-cell epitopes , 2006, Immunome research.

[68]  Morten Nielsen,et al.  A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules , 2006, PLoS Comput. Biol..

[69]  E. Ingulli,et al.  Visualization of specific B and T lymphocyte interactions in the lymph node. , 1998, Science.

[70]  Tin Wee Tan,et al.  Methods and protocols for prediction of immunogenic epitopes , 2006, Briefings Bioinform..

[71]  Vladimir Brusic,et al.  MHCPEP, a database of MHC-binding peptides: update 1996 , 1997, Nucleic Acids Res..