EpiExplorer: live exploration and global analysis of large epigenomic datasets

Epigenome mapping consortia are generating resources of tremendous value for studying epigenetic regulation. To maximize their utility and impact, new tools are needed that facilitate interactive analysis of epigenome datasets. Here we describe EpiExplorer, a web tool for exploring genome and epigenome data on a genomic scale. We demonstrate EpiExplorer's utility by describing a hypothesis-generating analysis of DNA hydroxymethylation in relation to public reference maps of the human epigenome. All EpiExplorer analyses are performed dynamically within seconds, using an efficient and versatile text indexing scheme that we introduce to bioinformatics. EpiExplorer is available at http://epiexplorer.mpi-inf.mpg.de.

[1]  Allen D. Delaney,et al.  Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters , 2010, Nature.

[2]  Dirk Schübeler,et al.  Tackling the epigenome: challenges and opportunities for collaboration , 2010, Nature Biotechnology.

[3]  A. Aszódi,et al.  H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. , 2009, Genome research.

[4]  Robert S. Illingworth,et al.  Orphan CpG Islands Identify Numerous Conserved Promoters in the Mammalian Genome , 2010, PLoS genetics.

[5]  Bradley E. Bernstein,et al.  GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells , 2010, PLoS genetics.

[6]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[7]  Simon Kasif,et al.  Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains , 2008, PLoS genetics.

[8]  Israel Steinfeld,et al.  Developmental programming of CpG island methylation profiles in the human genome , 2009, Nature Structural &Molecular Biology.

[9]  E. Birney,et al.  EnsMart: a generic system for fast and flexible access to biological data. , 2003, Genome research.

[10]  Olle Melander,et al.  From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus , 2010, Nature.

[11]  Zachary D. Smith,et al.  Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution , 2010, Nature Methods.

[12]  Daniel Tunkelang,et al.  Faceted Search , 2009, Synthesis Lectures on Information Concepts, Retrieval, and Services.

[13]  G. K. Sandve,et al.  The Genomic HyperBrowser: inferential genomics at the sequence level , 2010, Genome Biology.

[14]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[15]  Suhua Feng,et al.  5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells , 2011, Genome Biology.

[16]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[17]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[18]  Syed Haider,et al.  Ensembl BioMarts: a hub for data retrieval across taxonomic space , 2011, Database J. Biol. Databases Curation.

[19]  David R. Liu,et al.  Conversion of 5-Methylcytosine to 5- Hydroxymethylcytosine in Mammalian DNA by the MLL Partner TET1 , 2009 .

[20]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[21]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[22]  Ting Wang,et al.  ENCODE whole-genome data in the UCSC Genome Browser , 2009, Nucleic Acids Res..

[23]  K. Döhner,et al.  TET genes: new players in DNA demethylation and important determinants for stemness. , 2011, Experimental hematology.

[24]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[25]  Thomas Lengauer,et al.  BLUEPRINT to decode the epigenetic signature written in blood , 2012, Nature Biotechnology.

[26]  Thomas Lengauer,et al.  CpG Island Mapping by Epigenome Prediction , 2007, PLoS Comput. Biol..

[27]  Clifford A. Meyer,et al.  Cistrome: an integrative platform for transcriptional regulation studies , 2011, Genome Biology.

[28]  Joachim Büch,et al.  EpiGRAPH: user-friendly software for statistical analysis and prediction of (epi)genomic data , 2009, Genome Biology.

[29]  David Haussler,et al.  ENCODE whole-genome data in the UCSC genome browser (2011 update) , 2010, Nucleic Acids Res..

[30]  A. Bird,et al.  CpG islands and the regulation of transcription. , 2011, Genes & development.

[31]  Pietro Liò,et al.  EpiChIP: gene-by-gene quantification of epigenetic modification levels , 2010, Nucleic acids research.

[32]  R. Tjian,et al.  Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. , 1989, Science.

[33]  Carole A. Goble,et al.  Taverna: a tool for building and running workflows of services , 2006, Nucleic Acids Res..

[34]  Michael Q. Zhang,et al.  Computational prediction of methylation status in human genomic sequences. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  B. Ren,et al.  Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells , 2011, PLoS genetics.

[36]  J. Soulier,et al.  Mutation in TET2 in myeloid cancers. , 2009, The New England journal of medicine.

[37]  Andreas Prlic,et al.  Ensembl 2008 , 2007, Nucleic Acids Res..

[38]  Peter A. Jones,et al.  DNA methylation and cellular reprogramming. , 2010, Trends in cell biology.

[39]  J. Rinn,et al.  A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response , 2010, Cell.

[40]  Vijay K. Tiwari,et al.  DNA-binding factors shape the mouse methylome at distal regulatory regions , 2011, Nature.

[41]  Marti A. Hearst Search User Interfaces , 2009 .

[42]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[43]  Robert Gentleman,et al.  Statistical Analyses and Reproducible Research , 2007 .

[44]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[45]  Michael Q. Zhang,et al.  Large-scale human promoter mapping using CpG islands , 2000, Nature Genetics.

[46]  Natalie Jäger,et al.  Genome-wide mapping of DNA methylation: a quantitative technology comparison , 2010, Nature Biotechnology.

[47]  S. Orkin Globin gene regulation and switching: Circa 1990 , 1990, Cell.

[48]  Sin Lam Tan,et al.  Mice and Men: Their Promoter Properties , 2006, PLoS genetics.

[49]  T. Carell,et al.  5-Hydroxymethylcytosine, the sixth base of the genome. , 2011, Angewandte Chemie.

[50]  Michael B. Stadler,et al.  Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome , 2007, Nature Genetics.

[51]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[52]  Thomas Lengauer,et al.  CpG Island Methylation in Human Lymphocytes Is Highly Correlated with DNA Sequence, Repeats, and Predicted DNA Structure , 2006, PLoS genetics.

[53]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[54]  Michael B. Stadler,et al.  Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. , 2008, Molecular cell.

[55]  Erik van Nimwegen,et al.  Corrigendum: DNA-binding factors shape the mouse methylome at distal regulatory regions , 2012, Nature.

[56]  Amos Tanay,et al.  Primate CpG Islands Are Maintained by Heterogeneous Evolutionary Regimes Involving Minimal Selection , 2011, Cell.

[57]  S. Andrews,et al.  Dynamic CpG island methylation landscape in oocytes and preimplantation embryos , 2011, Nature Genetics.

[58]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[59]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[60]  G. Hon,et al.  Next-generation genomics: an integrative approach , 2010, Nature Reviews Genetics.

[61]  Eric S. Lander,et al.  Comparative Epigenomic Analysis of Murine and Human Adipogenesis , 2010, Cell.

[62]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[63]  David Haussler,et al.  The Human Epigenome Browser at Washington University , 2011, Nature Methods.

[64]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[65]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[66]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[67]  N. Heintz,et al.  The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain , 2009, Science.

[68]  T. Mikkelsen,et al.  Genome-scale DNA methylation maps of pluripotent and differentiated cells , 2008, Nature.

[69]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[70]  Ingmar Weber,et al.  The CompleteSearch Engine: Interactive, Efficient, and Towards IR& DB Integration , 2007, CIDR.