The optimal periodic motions of a two-mass system in a resistant medium

The rectilinear motions of a two-mass system, consisting of a container and an internal mass, in a medium with resistance, are considered. The displacement of the system as a whole occurs due to periodic motion of the internal mass with respect to the container. The optimal periodic motions of the system, corresponding to the greatest velocity of displacement of the system as a whole, averaged over a period, are constructed and investigated using a simple mechanical model. Different laws of resistance of the medium, including linear and quadratic resistance, isotropic and anisotropic, and also a resistance in the form of dry-friction forces obeying Coulomb's law, are considered.