Estimating gene flow in island populations.

A new method is presented for estimating the rate of gene flow into island populations using the distribution of alleles in samples from a number of islands. The pseudo maximum likelihood estimator (PMLE) that we derive may be applied to species with either discrete or continuous generation times. For Wright's discrete-generation island model, the method provides an estimate of theta = 2Nm where N is the (haploid) population size on each island and m is the fraction of individuals replaced by immigrants in each generation. For a continuous-generation island model, the corresponding parameter theta is the ratio of the immigration rate phi to the individual birth rate lambda. Monte Carlo simulations are used to compare the statistical properties of the PMLE with those of two alternative estimators of theta derived from Wright's F-statistics. The PMLE is shown to have greatest efficiency (least mean square error) in most cases for a wide range of sample sizes and parameter values. The PMLE is applied to estimate theta using mtDNA haplotypes and allozymes for subdivided populations of African elephants and Channel Island foxes.

[1]  G. Malécot,et al.  Les mathématiques de l'hérédité , 1948 .

[2]  J. Reeds,et al.  Compound Multinomial Likelihood Functions are Unimodal: Proof of a Conjecture of I. J. Good , 1977 .

[3]  M Slatkin,et al.  A cladistic measure of gene flow inferred from the phylogenies of alleles. , 1989, Genetics.

[4]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[5]  M. Nei Analysis of gene diversity in subdivided populations. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Powell,et al.  Electrophoretic Variation, Regional Differences, and Gene Flow in the Coho Salmon (Oncorhynchus kisutch) of Southern British Colombia , 1987 .

[7]  S. Edwards MITOCHONDRIAL GENE GENEALOGY AND GENE FLOW AMONG ISLAND AND MAINLAND POPULATIONS OF A SEDENTARY SONGBIRD, THE GREY‐CROWNED BABBLER (POMATOSTOMUS TEMPORALIS) , 1993, Evolution; international journal of organic evolution.

[8]  J. Hartigan,et al.  Identity by descent in island-mainland populations. , 1995, Genetics.

[9]  S WRIGHT,et al.  Genetical structure of populations. , 1950, Nature.

[10]  C. Cox,et al.  Pseudo maximum likelihood estimation for the dirichlet-multinomial distribution , 1985 .

[11]  R. Lewontin,et al.  The Genetic Basis of Evolutionary Change , 2022 .

[12]  M. Slatkin,et al.  Estimation of levels of gene flow from DNA sequence data. , 1992, Genetics.

[13]  M. Slatkin,et al.  A COMPARISON OF THREE INDIRECT METHODS FOR ESTIMATING AVERAGE LEVELS OF GENE FLOW , 1989, Evolution; international journal of organic evolution.

[14]  J. Mosimann On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions , 1962 .

[15]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[16]  M. Kimura,et al.  The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. , 1964, Genetics.

[17]  N. Barton,et al.  Rare electrophoretic variants in a hybrid zone , 1983, Heredity.

[18]  S. Wright Evolution in mendelian populations , 1931 .

[19]  Montgomery Slatkin,et al.  Gene Flow in Natural Populations , 1985 .

[20]  R. Wayne,et al.  GENETIC SUBDIVISIONS AMONG SMALL CANIDS: MITOCHONDRIAL DNA DIFFERENTIATION OF SWIFT, KIT, AND ARCTIC FOXES , 1993, Evolution; international journal of organic evolution.

[21]  M. Kimura,et al.  'Stepping stone' model of population , 1953 .

[22]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[23]  A. Templeton,et al.  Structure and history of African elephant populations: I. Eastern and southern Africa. , 1994, The Journal of heredity.

[24]  C. Wehrhahn Proceedings of the ecological genetics Workshop , 1989 .

[25]  Gail Gong,et al.  Pseudo Maximum Likelihood Estimation: Theory and Applications , 1981 .

[26]  G. Simpson,et al.  Genetics, paleontology, and evolution. , 1949 .

[27]  M. Slatkin,et al.  A Quasi-equilibrium theory of the distribution of rare alleles in a subdivided population , 1986, Heredity.

[28]  T. Maruyama,et al.  Effective number of alleles in a subdivided population. , 1970, Theoretical population biology.

[29]  William R. Parke Pseudo Maximum Likelihood Estimation: The Asymptotic Distribution , 1986 .

[30]  C. Cockerham,et al.  ESTIMATION OF GENE FLOW FROM F‐STATISTICS , 1993, Evolution; international journal of organic evolution.

[31]  Niles Lehman,et al.  A MORPHOLOGIC AND GENETIC STUDY OF THE ISLAND FOX, UROCYON LITTORALIS , 1991, Evolution; international journal of organic evolution.

[32]  T. Maruyama Analysis of population structure: II. Two‐dimensional stepping sone models of finite length and other geographically structured populations * , 1971 .

[33]  S. Brier Analysis of contingency tables under cluster sampling , 1980 .

[34]  J. Crow,et al.  Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. , 1984, Proceedings of the National Academy of Sciences of the United States of America.