Model-based far-field alignment algorithm for Gaussian beamlike single-mode optical devices.

Single-mode device-to-fiber alignment automation is usually achieved with a classical mathematical optimization approach. We present a different approach, which is based on the identification of particular intrinsic characteristics of the coupled optical power and on estimating residual axial, transverse, and angular misalignments in the far field. Such a model-based approach is based on the physical nature of the optical coupling phenomenon and can replace or be complementary to already known automated alignment methods. An alignment algorithm is described and validated experimentally using two single-mode fibers as Gaussian beam emitter and receiver.