Pseudo‐likelihood ratio tests for semiparametric multivariate copula model selection

The authors propose pseudo-likelihood ratio tests for selecting semiparametric multivariate copula models in which the marginal distributions are unspecified, but the copula function is parameterized and can be misspecified. For the comparison of two models, the tests differ depending on whether the two copulas are generalized nonnested or generalized nested. For more than two models, the procedure is built on the reality check test of White (2000). Unlike White (2000), however, the test statistic is automatically standardized for generalized nonnested models (with the benchmark) and ignores generalized nested models asymptotically. The authors illustrate their approach with American insurance claim data. Tests du rapport des pseudo-vraisemblances pour la selection de modeles de copules multivaries semiparametriques: Les auteurs proposent l'emploi de tests du rapport des pseudo-vraisemblances pour la selection de modeles de copules multivaries semiparametriques dans lesquels les marges ne sont pas precisees et la copule parametrique peut eventuellement ětre ma1 specifiee. La forme du test permettant de comparer deux modeles varie selon que les copules sous-jacentes sont emboitees ou non dans un sens large. La procedure permettant de comparer plusieurs modeles a la fois s'inspire du test de realisme de White (2000). A la difference de ce demier, cependant, la statistique du test est automatiquement standardisee (par rapport a un etalon) pour les modeles non-emboites et fait fi, asymptotiquement, des modeles emboites. Les auteurs illustrent leur approche a l'aide de donntes americaines de sinistres en assurance.

[1]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[2]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[3]  Chunrong Ai,et al.  A Semiparametric Maximum Likelihood Estimator , 1997 .

[4]  Bruno Rémillard,et al.  Goodness-of-fit Procedures for Copula Models Based on the Integral Probability Transformation , 2003 .

[5]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[6]  Michel Denuit,et al.  Bivariate Archimedean copula modelling for loss-ALAE data in non-life insurance , 2004 .

[7]  Markus Junker,et al.  Measurement of Aggregate Risk with Copulas , 2005 .

[8]  D. Oakes Multivariate survival distributions , 1994 .

[9]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[10]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[11]  W. R. van Zwet,et al.  Asymptotic Normality of Nonparametric Tests for Independence , 1972 .

[12]  H. White,et al.  Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models , 2000 .

[13]  C. Klaassen,et al.  Efficient estimation in the bivariate normal copula model: normal margins are least favourable , 1997 .

[14]  Kilani Ghoudi,et al.  Empirical Processes Based on Pseudo-observations 11: The Multivariate Case , 2004 .

[15]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[16]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[17]  Yanqin Fan,et al.  Simple Tests for Models of Dependence between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates , 2004 .

[18]  [Comment on the paper by E. Rossipal: Demonstration of precipitating antibodies against aqueous flour extracts in coeliac disease]. , 1971, Zeitschrift fur Kinderheilkunde.

[19]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[20]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[21]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[22]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[23]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[24]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[25]  O. Linton,et al.  A NONPARAMETRIC REGRESSION ESTIMATOR THAT ADAPTS TO ERROR DISTRIBUTION OF UNKNOWN FORM , 2001, Econometric Theory.

[26]  Christian Genest,et al.  Conditions for the Asymptotic Semiparametric Efficiency of an Omnibus Estimator of Dependence Parame , 2000 .

[27]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[28]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[29]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[30]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[31]  Donald W. K. Andrews,et al.  Nonparametric Kernel Estimation for Semiparametric Models , 1995, Econometric Theory.

[32]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[33]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[34]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[35]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[36]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[37]  Christian Genest,et al.  “Understanding Relationships Using Copulas,” by Edward Frees and Emiliano Valdez, January 1998 , 1998 .