Random Matrix Derived Shrinkage of Spectral Precision Matrices

There has been much research on shrinkage methods for real-valued covariance matrices and their inverses (precision matrices). In spectral analysis of p-vector-valued time series, complex-valued spectral matrices and precision matrices arise, and good shrinkage methods are often required, most notably when the estimated complex-valued spectral matrix is singular. As an improvement on the Ledoit-Wolf (LW) type of spectral matrix estimator we use random matrix theory to derive a Rao-Blackwell estimator for a spectral matrix, its inverse being a Rao-Blackwellized estimator for the spectral precision matrix. A random matrix method has previously been proposed for complex-valued precision matrices. It was implemented by very costly simulations. We formulate a fast, completely analytic approach. Moreover, we derive a way of selecting an important parameter using predictive risk methodology. We show that both the Rao-Blackwell estimator and the random matrix estimator of the precision matrix can substantially outperform the inverse of the LW estimator in a time series setting. Our new methodology is applied to EEG-derived time series data where it is seen to work well and deliver substantial improvements for precision matrix estimation.

[1]  M. A. Golberg,et al.  The Derivative of a Determinant , 1972 .

[2]  Xiaoqian Sun,et al.  Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix , 2011, Comput. Stat. Data Anal..

[3]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[4]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[5]  Xiaohui Chen,et al.  Shrinkage-to-Tapering Estimation of Large Covariance Matrices , 2012, IEEE Transactions on Signal Processing.

[6]  Clifford S. Stein Estimation of a covariance matrix , 1975 .

[7]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[8]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[9]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[10]  D. Kraus,et al.  Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices , 2000 .

[11]  Ke Wang,et al.  An innovative approach for analysing rank deficient covariance matrices , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[12]  Rainer von Sachs,et al.  Shrinkage estimation in the frequency domain of multivariate time series , 2009, J. Multivar. Anal..

[13]  D. Dey,et al.  Estimation of a covariance matrix under Stein's loss , 1985 .

[14]  Andrew T. Walden,et al.  Statistical Properties of the Estimator of the Rotary Coefficient , 2011, IEEE Transactions on Signal Processing.

[15]  Yan V Fyodorov,et al.  A few remarks on colour–flavour transformations, truncations of random unitary matrices, Berezin reproducing kernels and Selberg-type integrals , 2006, math-ph/0610045.

[16]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[17]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[18]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[19]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[20]  Muni S. Srivastava,et al.  Singular Wishart and multivariate beta distributions , 2003 .

[21]  L. R. Haff ESTIMATION OF THE INVERSE COVARIANCE MATRIX: RANDOM MIXTURES OF THE INVERSE WISHART MATRIX AND THE IDENTITY , 1979 .

[22]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[23]  Thomas L. Marzetta,et al.  A Random Matrix-Theoretic Approach to Handling Singular Covariance Estimates , 2011, IEEE Transactions on Information Theory.

[24]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[25]  Xiaohui Chen,et al.  Efficient Minimax Estimation of a Class of High-Dimensional Sparse Precision Matrices , 2012, IEEE Transactions on Signal Processing.

[26]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[27]  J. Neyman Contributions to the theory of statistics , 1956 .

[28]  Andrew T. Walden,et al.  Simulation Methodology for Inference on Physical Parameters of Complex Vector-Valued Signals , 2013, IEEE Transactions on Signal Processing.

[29]  H. Ombao,et al.  The generalized shrinkage estimator for the analysis of functional connectivity of brain signals , 2011, 1108.3187.

[30]  L. R. Haff Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix , 1980 .

[31]  F. Hiai Asymptotic Freeness Almost Everywhere for Random Matrices , 1999 .

[32]  A. Walden,et al.  Brain connectivity in positive and negative syndrome schizophrenia , 2010, Neuroscience.

[33]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[34]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[35]  Donald B. Percival,et al.  The effective bandwidth of a multitaper spectral estimator , 1995 .

[36]  Kurt S. Riedel,et al.  Minimum bias multiple taper spectral estimation , 2018, IEEE Trans. Signal Process..

[37]  L. J. Savage,et al.  Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics , 1949 .

[38]  B. Efron,et al.  Multivariate Empirical Bayes and Estimation of Covariance Matrices , 1976 .

[39]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[40]  T. Ratnarajah,et al.  Complex singular wishart matrices and applications , 2005 .

[41]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.