Reconstructing the amorphous and defective surface for efficient and stable perovskite solar cells

[1]  Jing Yang,et al.  Crosslinkable and Chelatable Organic Ligand Enables Interfaces and Grains Collaborative Passivation for Efficient and Stable Perovskite Solar Cells. , 2022, Small.

[2]  Yang Yang,et al.  Stability-limiting heterointerfaces of perovskite photovoltaics , 2022, Nature.

[3]  Thomas G. Allen,et al.  Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions , 2022, Science.

[4]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[5]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[6]  Xiaoji G. Xu,et al.  Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility , 2021, Science.

[7]  A. Islam,et al.  Gradient 1D/3D Perovskite Bilayer using 4‐ tert ‐Butylpyridinium Cation for Efficient and Stable Perovskite Solar Cells , 2021 .

[8]  P. Li,et al.  Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity , 2021, Science.

[9]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[10]  A. B. Alabi,et al.  Stability-improved perovskite solar cells through 4-tertbutylpyridine surface-passivated perovskite layer fabricated in ambient air , 2021 .

[11]  J. Noh,et al.  Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth , 2021 .

[12]  Geoffrey I N Waterhouse,et al.  Polymerization stabilized black-phase FAPbI3 perovskite solar cells retain 100% of initial efficiency over 100 days , 2021 .

[13]  Rusen Yang,et al.  Perovskite Passivation Strategies for Efficient and Stable Solar Cells , 2020 .

[14]  Jinsong Huang,et al.  Identifying the Soft Nature of Defective Perovskite Surface Layer and Its Removal Using a Facile Mechanical Approach , 2020 .

[15]  Jianbin Xu,et al.  Cascade Type‐II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency , 2020 .

[16]  Yuanyuan Zhou,et al.  Electron-beam-induced cracking in organic-inorganic halide perovskite thin films , 2020 .

[17]  Jianbin Xu,et al.  Identifying the functional groups effect on passivating perovskite solar cells. , 2020, Science bulletin.

[18]  Dong Suk Kim,et al.  Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss , 2020, Science.

[19]  Chen Zhao,et al.  Enhancing Perovskite Solar Cell Performance through Femtosecond Laser Polishing , 2020 .

[20]  Kwanghee Lee,et al.  Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface re-crystallization , 2020 .

[21]  Yongli Gao,et al.  Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells. , 2020, Journal of the American Chemical Society.

[22]  Yang Yang,et al.  Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics , 2019, Science.

[23]  Yulin Yang,et al.  4-Tert butylpyridine induced MAPbI3 film quality enhancement for improving the photovoltaic performance of perovskite solar cells with two-step deposition route , 2019, Applied Surface Science.

[24]  Seong Sik Shin,et al.  An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss , 2019, Energy & Environmental Science.

[25]  L. Franco,et al.  Evidence of Spiro-OMeTAD De-doping by tert-Butylpyridine Additive in Hole-Transporting Layers for Perovskite Solar Cells , 2019, Chem.

[26]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[27]  Jianbin Xu,et al.  General Nondestructive Passivation by 4-Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. , 2018, Small.

[28]  Y. Meng,et al.  the Role of tBP-LiTFSI Complexes in Perovskite Solar Cells. , 2018 .

[29]  U. Bach,et al.  4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability , 2018, ACS Energy Letters.

[30]  Hui Bian,et al.  3D–2D–0D Interface Profiling for Record Efficiency All‐Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability , 2018 .

[31]  K. Sun,et al.  Lewis Acid–Base Interaction-Induced Porous PbI2 Film for Efficient Planar Perovskite Solar Cells , 2018 .

[32]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[33]  Jinsong Huang,et al.  Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. , 2018, The journal of physical chemistry letters.

[34]  T. Hayat,et al.  Incorporating 4-tert-Butylpyridine in an Antisolvent: A Facile Approach to Obtain Highly Efficient and Stable Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[35]  N. Koch,et al.  Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces. , 2017, ACS applied materials & interfaces.

[36]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[37]  Alex K.-Y. Jen,et al.  Toward All Room‐Temperature, Solution‐Processed, High‐Performance Planar Perovskite Solar Cells: A New Scheme of Pyridine‐Promoted Perovskite Formation , 2017, Advanced materials.

[38]  Xingzhong Zhao,et al.  Efficient and Stable Perovskite Solar Cells Prepared in Ambient Air Based on Surface-Modified Perovskite Layer , 2017 .

[39]  S. Hayase,et al.  Direct observation of dramatically enhanced hole formation in a perovskite-solar-cell material spiro-OMeTAD by Li-TFSI doping , 2017 .

[40]  Nakita K. Noel,et al.  Investigating the Role of 4‐Tert Butylpyridine in Perovskite Solar Cells , 2017 .

[41]  Yongzhen Wu,et al.  Enhanced Stability of Perovskite Solar Cells through Corrosion‐Free Pyridine Derivatives in Hole‐Transporting Materials , 2016, Advanced materials.

[42]  Ying Shirley Meng,et al.  Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. , 2016, Nano letters.

[43]  Y. Qi,et al.  Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer , 2016 .

[44]  M. Saidaminov,et al.  The In‐Gap Electronic State Spectrum of Methylammonium Lead Iodide Single‐Crystal Perovskites , 2016, Advanced materials.

[45]  T. Ma,et al.  Effects of 4-tert-butylpyridine on perovskite formation and performance of solution-processed perovskite solar cells , 2015 .

[46]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[47]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.