A contact algorithm for voxel-based meshes using an implicit boundary representation

Abstract Numerical methods operating on structured grids have become popular since they offer good run time performance and are able to process directly voxel-based digital data from image recordings. Hence, the general framework of these fast solvers presupposes an unfitted boundary approximation avoiding complicated meshing of bodies. This allows an efficient handling with geometrical issues. Nevertheless, contacts between deformable solids are hard to deal with in the presence of this boundary representation. For this difficulty we suggest the usage of an implicit boundary representation combined with a modified saddle point formulation, resembling Nitsche’s approach. Both ideas give an elegant approach for discretizing the contact terms and enable a simple contact detection. Moreover, we suggest an intermediate surface as new reference contact area which fits well into our proposed method. In the end we present numerical results and analyze the accuracy and convergence rate. Furthermore, we demonstrate the current application range of our approach for problems with multiple contacts. In this paper we focus only on frictionless contact with small deformations.

[1]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[2]  Stéphane Bordas,et al.  Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .

[3]  Thomas Apel,et al.  Transformation of Hexaedral Finite Element Meshes into Tetrahedral Meshes According to Quality Criteria , 2003, Computing.

[4]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[5]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[6]  Juan José Ródenas,et al.  Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field , 2015 .

[7]  V. Popov Contact Mechanics and Friction , 2010 .

[8]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[9]  Ralf Kornhuber,et al.  A monotone multigrid solver for two body contact problems in biomechanics , 2007 .

[10]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[11]  T. Laursen,et al.  A mortar‐finite element formulation for frictional contact problems , 2000 .

[12]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[13]  Frédéric Gibou,et al.  A local level-set method using a hash table data structure , 2012, J. Comput. Phys..

[14]  Damien Durville,et al.  Contact-friction modeling within elastic beam assemblies: an application to knot tightening , 2012 .

[15]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[16]  Franz Chouly,et al.  An unbiased Nitsche’s approximation of the frictional contact between two elastic structures , 2018, Numerische Mathematik.

[17]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[18]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[19]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[20]  Roger A. Sauer,et al.  A computational contact formulation based on surface potentials , 2013 .

[21]  David J. Benson,et al.  Kinetic friction for multi-material arbitrary Lagrangian Eulerian extended finite element formulations , 2009 .

[22]  Manuel Tur,et al.  A modified perturbed Lagrangian formulation for contact problems , 2015 .

[23]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[24]  Roger A. Sauer,et al.  An unbiased computational contact formulation for 3D friction , 2015 .

[25]  David Horák,et al.  A scalable FETI-DP algorithm with non-penetration mortar conditions on contact interface , 2009, J. Comput. Appl. Math..

[26]  Chohong Min,et al.  On reinitializing level set functions , 2010, J. Comput. Phys..

[27]  P. Smereka The numerical approximation of a delta function with application to level set methods , 2006 .

[28]  Jérôme Pousin,et al.  A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method , 2016 .

[29]  Z. Dostál On preconditioning and penalized matrices , 1999 .

[30]  Frédéric Gibou,et al.  Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions , 2008, J. Comput. Phys..

[31]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[32]  Fehmi Cirak,et al.  An unstructured immersed finite element method for nonlinear solid mechanics , 2016, Adv. Model. Simul. Eng. Sci..

[33]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[34]  M. Schneider,et al.  FFT‐based homogenization for microstructures discretized by linear hexahedral elements , 2017 .

[35]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[37]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[38]  Jiun-Shyan Chen,et al.  A level set enhanced natural kernel contact algorithm for impact and penetration modeling , 2015 .

[39]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[40]  Mohammad Mirzadeh,et al.  Parallel level-set methods on adaptive tree-based grids , 2016, J. Comput. Phys..

[41]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[42]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[43]  Stefan Loehnert,et al.  A stabilization technique for the regularization of nearly singular extended finite elements , 2014 .

[44]  Wolfgang A. Wall,et al.  A dual mortar approach for 3D finite deformation contact with consistent linearization , 2010 .

[45]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[46]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[47]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[48]  Carlo Janna,et al.  Mixed constraint preconditioning in computational contact mechanics , 2008 .